Skip to main content
Log in

Principles of Selective Inactivation of a Viral Genome. Comparative Kinetic Study of Modification of the Viral RNA and Model Protein with Oligoaziridines

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Comparative kinetic analysis of inactivation of bacteriophage MS2 infectivity and aminoalkylation of a model protein (trypsin inhibitor) with oligoaziridines was performed in order to evaluate the selectivity of viral RNA modification with oligocationic reagents. The transition from ethyleneimine monomer to di-, tri-, and tetramer leads to a sharp increase in the rate constant of infectivity inactivation, whereas the rate constant of protein modification changes insignificantly. The selectivity coefficient of the phage RNA aminoalkylation relative to trypsin inhibitor modification increases in this series by more than an order of magnitude. This effect is probably associated with the strengthening of the reagent binding to the nucleic acid, which implies a reaction mechanism that involves the formation of a reactive intermediate. The latter might be an electrostatic complex of the oligocationic reagent and RNA, the only polyanion in the virion. A pronounced decrease in the rate constant of infectivity inactivation in the presence of multiply charged anions (in phosphate buffer) and a biogenic polyamine (spermine) favors this hypothesis. Increasing the reaction temperature increases the rate constant of infectivity inactivation and decreases selectivity of the viral RNA modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Budowsky, E. I. (1991) Adv. Virus Res., 39, 255-290.

    PubMed  Google Scholar 

  • Christianson, G. G., Pemberton, J. R., and Koski, T. A. (1980) J. Clin. Microbiol., 11, 377-379.

    PubMed  Google Scholar 

  • Warrington, R. E., Cunliff, H. R., and Bachrach, H. L. (1973) Am. J. Vet. Res., 34, 1087-1091.

    PubMed  Google Scholar 

  • Bahnemann, H. G. (1990) Vaccine, 8, 299-303.

    PubMed  Google Scholar 

  • York, S. M., and York, C. J. (1991) JAVMA, 199, 1419-1422.

    PubMed  Google Scholar 

  • Barteling, S. J., and Vreeswijk, J. (1991) Vaccine, 9, 75-88.

    PubMed  Google Scholar 

  • Hassanain, M. M. (1992) Res. Elev. Med. Vet. Pays Trop., 45, 231-234.

    Google Scholar 

  • Hulskotte, E. G., Dings, M. E., Norley, S. G., and Osterhaus, A. D. (1997) Vaccine, 15, 1839-1845.

    PubMed  Google Scholar 

  • Kyvsgaard, N. C., Hoier, R., Bruck, I., and Nansen, P. (1997) Acta Vet. Seanol., 38, 225-233.

    Google Scholar 

  • Budowsky, E. I., Zalesskaya, M. A., Nepomnyaschaya, N. M., and Kostyanovsky, R. G. (1996) Vaccine Res., 5, 29-39.

    Google Scholar 

  • Earley, J. E., O.Rourke, C. E., Clapp, L. B., Edwards, J. O., and Lawes, B. C. (1958) J. Am. Chem. Soc., 80, 3458-3462.

    Google Scholar 

  • Kostyanovsky, R. G., Leshchinskaya, V. P., Alekperov, R. K., Kadorkina, G. K., Shastova, L. L., El′natanov, Yu. I., Gromova, L. L., Aliev, A. E., and Chervin, I. I. (1988) Izv. Akad. Nauk SSSR, 11, 2566-2575.

    Google Scholar 

  • Epstein, J., Rosental, R. W., and Ess, R. J. (1955) Analyt. Chem., 27, 1435-1439.

    Google Scholar 

  • Rogerson, D. L., and Rushizky, G. W. (1975) Analyt. Biochem., 67, 675-678.

    PubMed  Google Scholar 

  • Yamamoto, K. R., Alberts, B. M., Benzinger, R., Lawhorne, L., and Treiber, G. (1970) Virology, 40, 734-744.

    PubMed  Google Scholar 

  • Righetti, P. G. (1983) Isoelectric Focusing: Theory, Methodology and Applications, Elsevier Biomedical Press, Amsterdam-New York-Oxford.

    Google Scholar 

  • O.Connor, T. R., Boiteux, S., and Laval, J. (1988) Nucleic Acids Res., 16, 5879-5893.

    PubMed  Google Scholar 

  • Hemmiki, K., and Ludlum, D. B. (1981) J. Natl. Cancer Inst., 73, 1021-1027.

    Google Scholar 

  • Hemminki, K. (1984) Chem.-Biol. Interact., 48, 249-260.

    PubMed  Google Scholar 

  • Voloshchuk, T. P., Patskovskii, Yu. V., and Potopal′skii, A. I. (1993) Bioorg. Khim., 19, 484-493.

    Google Scholar 

  • Hemminki, K., Peltonen, K., and Vodicka, P. (1989) Chem.-Biol. Interact., 70, 289-303.

    PubMed  Google Scholar 

  • Shooter, K. V., Howse, R., Shah, S. A., and Lawley, P. D. (1974) Biochem. J., 137, 303-312.

    PubMed  Google Scholar 

  • Voloshchuk, T. P., Patskovskii, Yu. V., and Potopal′skii, A. I. (1993) Bioorg. Khim., 19, 562-569.

    Google Scholar 

  • Shooter, K. V., Howse, R., and Merrifield, R. K. (1974) Biochem. J., 137, 313-317.

    PubMed  Google Scholar 

  • Rattery, M. A., and Cole, R. D. (1963) Biochem. Biophys. Res. Commun., 10, 467-472.

    PubMed  Google Scholar 

  • Steiner, R. F. (1965) Biochim. Biophys. Acta, 100, 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsvetkova, E.A., Nepomnyaschaya, N.M. Principles of Selective Inactivation of a Viral Genome. Comparative Kinetic Study of Modification of the Viral RNA and Model Protein with Oligoaziridines. Biochemistry (Moscow) 66, 875–884 (2001). https://doi.org/10.1023/A:1011952702725

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011952702725

Navigation