Skip to main content
Log in

Tumor Formation in Plants

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The data on genetic tumors in plant species and interspecific hybrids, as well as the problems of Agrobacterium-induced tumors are reviewed. The role of the horizontal gene transfer in the induction of genetic tumors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Shishkova, S.O., Study of the Spontaneous and Induced Tumor Formation in Tobacco Nocotiana tabacum L. and Small Radish Raphanus sativus L., Cand. Sci. (Biol.) Dissertation, St. Petersburg, 1991.

  2. Baiderbek, R., Opukholi rastenii (Plant Tumors), Moscow: Kolos, 1981.

    Google Scholar 

  3. Nuttal, V.W. and Lyall, L.H., Inheritance of Neoplastic Pods in Pea, J. Hered., 1964, vol. 55, pp. 184-186.

    Google Scholar 

  4. Littau, V.C. and Black, L.M., Spontaneous Tumors in Sweet Clover, Am. J. Bot., 1952, vol. 39, pp. 191-194.

    Google Scholar 

  5. Narbut, S.I., Mikhalevskaya, O.B., and Voilokov, A.V., Study of the Tumorigenic Ability of Inbred Radish Lines, Biol. Nauki, 1983, no. 7, pp. 87-91.

  6. Bayer, M., Genetic Tumors: Physiological Aspects of Tumor Formation in Interspecies Hybrids, Molecular Biology of Plant Tumors, New York: Academic, 1982, pp. 33-67.

    Google Scholar 

  7. Nester, E.W., Gordon, M.P., Amasino, R.M., and Yanofsky, M.F., Crown Gall: Molecular and Physiological Analysis, Annu. Rev. Plant. Physiol., 1984, vol. 35, pp. 387-413.

    Google Scholar 

  8. Morris, P.O., Genes Specifying Cytokinin and Auxin Biosynthesis in Phytopathogens, Annu. Rev. Plant Physiol., 1986, vol. 37, pp. 509-538.

    Google Scholar 

  9. Chernin, L.S., Slutskii, A.M., and Ovadis, M.I., Structural and Functional Organization of T-DNA of Ti and Ri Plasmids of Agrobacteria, Molekulyarnye i geneticheskie mekhanizmy vzaimodeistviya mikroorganizmov s rasteniyami.Sbornik nauchnykh trudov (Molecular and Genetic Mechanisms of Microorganism-Plant Interactions: Collection of Works), Pushchino, 1989, pp. 66-78.

  10. Ooms, G., Hooykaas, P.J., Moolenaar, G., and Schilperoort, R.A., Crown Gall Plant Tumors of Abnormal Morphology, Induced by Agrobacterium tumefaciens, Carrying Mutated Octopine Ti Plasmids: Analysis of T-DNA Functions, Gene, 1981, vol. 14, nos. 1–2, pp. 33-50.

    Google Scholar 

  11. Inze, D., Follin, A., Van Lijsebettens, M., et al., Genetic Analysis of the Individual T-DNA Genes of Agrobacterium tumefaciens: Further Evidence That Two Genes Are Involved in Indole-3-Acetic Acid Synthesis, Mol. Gen. Genet., 1984, vol. 194, pp. 265-274.

    Google Scholar 

  12. Thomashow, L.S., Reeves, S., and Thomashow, M.F., Crown Gall Oncogenesis: Evidence That a T-DNA Gene from the Agrobacterium Ti Plasmid PTiA6 Encodes an Enzyme That Catalyses Synthesis of Indole-Acetic Acid, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 5071-5075.

    Google Scholar 

  13. Klee, H.S. and Romano, C.P., The Roles of Phytohormones in Development as Studied in Transgenic Plants, Crit. Rev. Plant Sci., 1994, vol. 13, no. 4, pp. 311-324.

    Google Scholar 

  14. Hobbie, L., Timpte, C., and Estelle, M., Molecular Genetics of Auxin and Cytokinin, Plant Mol. Biol., 1994, vol. 26, pp. 1499-1519.

    Google Scholar 

  15. Smigocki, F.C. and Owens, L.D., Cytokinin Gene Fused with a Strong Promoter Enhances Shoot Organogenesis and Zeatin Level in Transformed Plant Cells, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 5131-5135.

    Google Scholar 

  16. Smigocki, A.C., Cytokinin Content and Tissue Distribution in Plants Transformed by a Reconstructed Isopentenyl Transferase Gene, Plant Mol. Biol., 1991, vol. 16, pp. 105-115.

    Google Scholar 

  17. Medford, J.I., Hordan, R., El-Sawi, Z., and Klee, H.J., Alterations of Endogenous Cytokinins in Transgenic Plants Using a Chimeric Isopentynyl Transferase Gene, Plant Cell, 1989, vol. 1, pp. 403-413.

  18. Smart, C.M., Smart, C., Scofield, S., Delayed Leaf Senescence in Tobacco Plant Transformed with trm, a Gene for Cytokinin Production in Agrobacterium, Plant Cell, 1991, vol. 3, pp. 647-656.

    Google Scholar 

  19. Korber, H., Strizhov, N., Staiger, D., et al., T-DNA Gene 5 of Agrobacterium Modulates Auxin Response by Autoregulated Synthesis of a Growth Hormone Antagonist in Plants, EMBO J., 1991, vol. 10, no. 13, pp. 3983-3991.

    Google Scholar 

  20. Spanier, K., Schell, J., and Schreirer, P.H., A Functional Analysis of T-DNA Gene 6b: The Fine Tuning of Cytokinin Effects on Shoot Development, Mol. Gen. Genet., 1989, vol. 219, nos. 1–2, pp. 209-216.

    Google Scholar 

  21. Tinland, B., Fournier, P., Heckel, T., and Otten, L., Expression of a Chimeric Heat-Shock-Inducible Agrobacterium 6b Oncogene in Nicotiana rustica, Plant Mol. Biol., 1992, vol. 18, no. 5, pp. 921-930.

    Google Scholar 

  22. Wabico, H. and Minemura, M., Exogenous Phytohormone-Independent Growth and Regeneration of Tobacco Plants Transgenic for the 6b Gene of Agrobacterium tumefaciens AKE10, Plant Physiol., 1996, vol. 112, no. 3, pp. 939-951.

    Google Scholar 

  23. Capone, I., Spano, L., Cardarelli, M., et al., Induction and Growth Properties of Carrot Roots with Different Complements of Agrobacterium rhizogenes T-DNA, Plant Mol. Biol., 1989, vol. 13, no. 1, pp. 43-52.

    Google Scholar 

  24. Fillippini, F., Rossi, V., Marin, O., et al., A Plant Oncogene as a Phosphatase, Nature, 1996, vol. 379, pp. 499-500.

    Google Scholar 

  25. Maurel, C., Leblanc, N., Barbier-Brygoo, H., et al., Alterations of Auxin Perception in rolB-Transformed Tobacco Protoplasts: Time Course of rolB mRNA Expression and Increase in Auxin Sensitivity Reveal Multiple Control by Auxin, Plant Physiol., 1994, vol. 105, no. 4, pp. 1209-1215.

    Google Scholar 

  26. Hansen, G., Vaubert, D., Clerot, D., et al., A New Open Reading Frame, Encoding a Putative Regulatory Protein, in Agrobacterium rhizogenes T-DNA, Acad. Sci., 1994, vol. 317, no. 1, pp. 49-53.

    Google Scholar 

  27. Lemcke, K. and Schmulling, T., Gain of Function Assay to Identify Non-rol Genes from Agrobacterium rhizogenes TL-DNA That Alter Plant Morphogenesis or Hormone Sensitivity, Plant J., vol. 15, no. 3, pp. 423-433.

  28. Schmuelling, T., Fladung, M., Grossmann, K., Hormonal Content and Sensitivity of Transgenic Tobacco and Potato Plants Expressing Single rol Genes of Agrobacterium rhizogenes T-DNA, Plant. J., 1993, vol. 3, no. 3, pp. 371-382.

    Google Scholar 

  29. Chernin, L.S. and Avdienko, I.D., Plasmid Phytohormone Genes and Their Role in Tumorigenesis, Mol. Biol., 1985, vol. 19, no. 4, pp. 869-889.

    Google Scholar 

  30. Christou, P., Habituation In Vitro Soybean Cultures, Plant Physiol., 1988, vol. 88, pp. 809-812.

    Google Scholar 

  31. Meins, F., Foster, R., and Lutz, J.D., Evidence for a Mendelian Factor Controlling the Cytokinin Requirement of Cultured Tobacco Cells, Dev. Genet., 1983, vol. 4, no. 2, pp. 129-141.

    Google Scholar 

  32. Meins, F. and Foster, R., A Cytokinin Mutant Derived from Cultured Tobacco Cells, Dev. Genet., 1985, vol. 7, no. 3, pp. 159-165.

    Google Scholar 

  33. Hansen, C.E., Meins, F., and Aebi, R., Hormonal Regulation of Zeatin-Riboside Accumulation by Cultured Tobacco Cells, Planta, 1987, vol. 172, no. 4, pp. 520-526.

    Google Scholar 

  34. Hansen, C.E. and Meins, F.J., Evidence for a Cellular Gene with Potential Oncogenic Activity in Plants, Proc. Natl. Acad. Sci. USA, 1986, no. 8, pp. 2492-2495.

  35. Meyer, A.D., Aebi, R., and Meins, F.J., Tobacco Plants Carrying a tms Locus of Ti Plasmid Origin and the Hl-1 Allele Are Tumor Prone, Differentiation (Berlin), 1997, vol. 61, no. 4, pp. 213-221.

    Google Scholar 

  36. Meins, F.J., Habituation of Cultured Plant Cells, Molecular Biology of Plant Tumors, Kahl, G. and Schell, J., Eds., New York: Academic, 1982, pp. 3-31.

    Google Scholar 

  37. Ichikawa, T. and Syono, K., Tobacco Genetic Tumors, Plant Cell Physiol., 1991, vol. 32, no. 8, pp. 1123-1128.

    Google Scholar 

  38. Kehr, A.E. and Smith, H.H., Genetic Tumors in Nicotiana Hybrids, Brookhaven Symp. Biol., 1954, vol. 6, pp. 55-76.

    Google Scholar 

  39. Smith, H., The Inheritance of Genetic Tumors in Nicotiana Hybrids, J. Hered., 1988, vol. 79, pp. 277-283.

    Google Scholar 

  40. Ahuja, M.R., A Cytogenetic Study of Heritable Tumors in Nicotiana Species Hybrids, Genetics, 1962, vol. 47, pp. 865-880.

    Google Scholar 

  41. Ahuja, M.R., A Hypothesis and Evidence Concerning the Genetic Components Controlling Tumor Formation in Nicotiana, Mol. Gen. Genet., 1968, vol. 103, no. 2, pp. 176-184.

    Google Scholar 

  42. Fujita, T., Ichikawa, T., and Syono, K., Changes in Morphology, Levels of Endogenous IAA, and Protein Composition in Relation to the Development of Tobacco Genetic Tumor Induced in the Dark, Plant Cell Physiol., 1991, vol. 32, no. 2, pp. 169-177.

    Google Scholar 

  43. Feng, X.H., Dube, S.K., Bottino, P.J., and Kung, S.D., Restoration of Shooty Morphology of a Nontumorous Mutant of Nicotiana glauca ×N. langsdorffii by Cytokinin and the Isopentenyl Transferase Gene, Plant Mol. Biol., 1990, vol. 15, no. 3, pp. 407-420.

    Google Scholar 

  44. White, F.F., Garfinkel, D.J., Huffman, G.A., et al., Sequence Homologous to Agrobacterium rhizogenes TDNA in the Genomes of Uninfected Plants, Nature, 1983, vol. 301, no. 5898, pp. 348-350.

    Google Scholar 

  45. Furner, I.J., Huffman, G.A., Amasino, R.M., et al., An Agrobacterium Transformation in the Evolution of the Genus Nicotiana, Nature, 1986, vol. 319, pp. 422-427.

    Google Scholar 

  46. Meyer, A.D., Ichikawa, T., and Meins, F., Horizontal Gene Transfer: Regulated Expression of a Tobacco Homologue of the Agrobacterium rhizogenes rolC Gene, Mol. Gen. Genet., 1995, vol. 249, pp. 265-273.

    Google Scholar 

  47. Frundt, C., Meyer, A.D., Ichikawa, T., and Meins, F.J., A Tobacco Homologue of the Ri-Plasmid ORF13 Gene Causes Cell Proliferation in Carrot Root Discs, Mol. Gen. Genet., 1998, vol. 259, no. 6, pp. 559-568.

    Google Scholar 

  48. Aoki, S. and Syono, K., Horizontal Gene Transfer and Mutation of ngrol Genes in the Genome of Nicotiana glauca, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 23, pp. 13229-13234.

    Google Scholar 

  49. Ichikawa, T., Ozeki, Y., and Syono, K., Evidence for the Expression of the rol Genes of Nicotiana glauca in Genetic Tumors of N. glauca ×N. langsdorffii, Mol. Gen. Genet., 1990, vol. 220, no. 2, pp. 177-180.

    Google Scholar 

  50. Aoki, S., Kawaoka, A., Sekine, M., et al., Sequence of the Cellular T-DNA in the Untranaformed Genome of Nicotiana glauca That Is Homologous to ORFs 13 and 14 of the Ri Plasmid and Analysis of Its Expression in Genetic Tumors of N. glauca ×N. langsdorffii, Mol. Gen. Genet., 1994, vol. 243, pp. 706-710.

    Google Scholar 

  51. Nagata, N., Kosono, S., Sekine, M., et al., The Regulatory Functions of the rolB and rolC Genes of Agrobacterium rhizogenes Are Conserved in the Homologous Genes (Ngrol) of Nicotiana glauca in Tobacco Genetic Tumors, Plant Cell Physiol., 1995, vol. 36, no. 6, pp. 1003-1012.

    Google Scholar 

  52. Lemcke, K. and Schmulling, T., A Putative rolB Gene Homologue of Agrobacterium rhizogenes TR-DNA Has Different Morphogenetic Activity in Tobacco Than rolB, Plant Mol. Biol., 1998, vol. 36, no. 5, pp. 803-808.

    Google Scholar 

  53. Bertolla, F. and Simonet, P., Horizontal Gene Transfers in the Environment: Natural Transformation as a Putative Process for Gene Transfers between Transgenic Plants and Microorganisms, Res. Microbiol., 1999, vol. 150, no. 6, pp. 375-384.

    Google Scholar 

  54. Mazodier, P., Petter, P., and Thompson, C., Integric Conjugation between Escherichia coli and Streptomyces Species, J. Bacteriol., 1989, vol. 171, pp. 3583-3585.

    Google Scholar 

  55. Heinemann, J.A. and Sprague, G.F., Bacterial Conjugative Plasmids Mobilize DNA Transfer between Bacteria and Yests, Nature, 1989, vol. 340, pp. 205-209.

    Google Scholar 

  56. Sprague, F.G., Genetic Exchange between Kingdoms, Curr. Opin. Genet. Dev., 1991, vol. 1, no. 4, pp. 530-533.

    Google Scholar 

  57. Schlueter, K., Fuetterer, J., and Potrykus, I., Horizontal Gene Transfer from a Transgenic Potato Line to a Bacterial Pathogen (Erwinia chrysanthemi) Occurs—If at All—at an Extremely Low Frequency, Bio/Technology, 1995, vol. 13, no. 10, pp. 1094-1098.

    Google Scholar 

  58. Nielsen, K.M., Bones, A.M., Smalla, K., and van Elsas, J.D., Horizontal Gene Transfer from Transgenic Plants to Terrestrial Bacteria—a Rare Event?, FEMS Microbiol. Rev., 1998, vol. 22, no. 2, pp. 79-103.

    Google Scholar 

  59. Chou, A.Y., Archdeacon, J., and Kado, K., Agrobacterium Transcriptional Regulator Ros Is a Prokaryotic Zinc Finger Protein That Regulates the Plant Oncogene ipt, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 5293-5298.

    Google Scholar 

  60. Ohyama, K., Chloroplast and Mitochondrial Genomes from Liverwort, Marchantia polymorpha—Gene Organization and Molecular Evolution, Biosci. Biotechnol. Biochem., 1996, vol. 60, no. 1, pp. 16-24.

    Google Scholar 

  61. Pozueta-Romero, J., Houln, G., and Schantz, R., Identification of a Short Interspersed Repetitive Element in Partially Spliced Transcripts of Bell Pepper (Capsicum annum) PAP Gene: New Evolutionary Aspects of Plant tRNA-Related SINEs, Gene, 1998, vol. 214, nos. 1–2, pp. 51-58.

    Google Scholar 

  62. Fujita, T., Kouchi, H., Ichikawa, T., and Syono, K., Isolation and Characterization of a cDNA That Encodes a Novel Proteinase Inhibitor I from a Tobacco Genetic Tumor, Plant Cell Physiol., 1993, vol. 34, pp. 137-142.

    Google Scholar 

  63. Fujita, T., Kouchi, H., Ichikawa, T., and Syono, K., Cloning of cDNAs for Genes That Are Specifically or Preferentially Expressed during the Development of Tobacco Genetic Tumors, Plant J., 1994, vol. 5, no. 5, pp. 645-654.

    Google Scholar 

  64. Feng, X.-H. and Kung, S.-D., Identification of Differentially Expressed Members of Tobacco Homeobox Families by Differential PCR, Biochem. Biophys. Res. Commun., 1994, vol. 198, no. 3, pp. 1012-1019.

    Google Scholar 

  65. Nandi, S.K., Palni, L.M.S., and Parker, C.W., Dynamics of Endogenous Cytokinins during the Growth Cycle of Hormone-Autotrophic Genetic Tumor Line of Tobacco, Plant Physiol., 1990, vol. 94, pp. 1084-1089.

    Google Scholar 

  66. Phillips, L.L. and Merrit, J.F., Interspecific Incompatibility in Gossipium: I. Stem Histogenesis of G. hirsutum ×G. gossipoides, Am. J. Bot., 1972, vol. 59, pp. 203-208.

    Google Scholar 

  67. Martin, P.G., Variation in the Amounts of Nucleic Acids in the Cells of Different Species of Higher Plants, Exp. Cell Res., 1966, vol. 44, no. 1, pp. 84-94.

    Google Scholar 

  68. Rappaport, J.J., Satina, S., and Blakeslee, A.F., Extracts of Ovular Tumors and Inhibition of Embryo Growth in Datura, Am. J. Bot., 1950, vol. 37, pp. 586-595.

    Google Scholar 

  69. Emsweller, S.L., Asen, S., and Uhring, J., Tumor Formation in Interspecific Hybrids of Lilium, Science, 1962, vol. 136, p. 226.

    Google Scholar 

  70. Burgess, J. and Fleming, E.N., The Structure and Development of a Genetic Tumor of the Pea, Protoplasma, 1973, vol. 76, no. 3, pp. 315-325.

    Google Scholar 

  71. De Torok, D., The Cytological and Growth Characteristics of Tumor and Normal Clones of Picea glauca, Cancer Res., 1968, vol. 28, no. 3, pp. 608-614.

    Google Scholar 

  72. Campell, B.R. and Town, C.D., Characterization of Overexpressed cDNAs Isolated from a Hormone-Autonomous, Radiation-Induced Tumor Tissue Line of Arabidopsis thaliana, Plant Physiol., 1992, vol. 100, pp. 2018-2023.

    Google Scholar 

  73. Markus, F., Rupp, H.-M., Prinsen, E., et al., Hormone Autotrophic Growth and Differentiation Identifies Mutant Lines of Arabidopsis with Altered Cytokinin and Auxin Content or Signaling, Plant Physiol., vol. 122, pp. 1-9.

  74. Narbut, S.I., Genetic Tumor Obtained during Inbreeding in Small Radish, Vestn. Leningr. Univ., 1967, no. 15, pp. 144-149.

    Google Scholar 

  75. Narbut, S.I., Voilokov, A.V., and Kirillova, G.A., Genetic Characterization of Small Radish Raphanus sativus Var.Radicola Pers, Vestn. Leningr. Univ., 1985, no. 24, pp. 75-78.

    Google Scholar 

  76. Buzovkina, I.S. and Lutova, L.A., Genetic, Biochemical, and Physiological Aspects of Tumorigenesis in Inbred Lines of Small Radish, Vestn. Leningr. Univ., 1991, issue 2, pp. 102-107.

  77. Matveeva, T.V., Dodueva, I.E., Vud, D., et al., Study of the Role of Phytohormones in Tumorigenesis in Small Radish, Genetika (Moscow), 2000, vol. 36, no. 2, pp. 203-208.

    Google Scholar 

  78. Buzovkina, I.S., Kneshke, I., and Lutova, L.A., In Vitro Modeling of Tumorigenesis in Small Radish Line and Hybrids, Genetika (Moscow), 1993, vol. 29, no. 6, pp. 1002-1008.

    Google Scholar 

  79. Buzovkina, I.S., Kneshke, I., and Lutova, L.A., Genetic Analysis of Trait “In Vitro Sensitivity to Cytokinin,” Genetika (Moscow), 1993, vol. 29, no. 6, pp. 995-1001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveeva, T.V., Lutova, L.A. & Nester, Y. Tumor Formation in Plants. Russian Journal of Genetics 37, 993–1001 (2001). https://doi.org/10.1023/A:1011949211985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011949211985

Keywords

Navigation