Skip to main content
Log in

Variations of the Effect of Insulin on Neutrophil Respiratory Burst. The Role of Tyrosine Kinases and Phosphatases

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The priming effect of insulin on the fMLP-induced respiratory burst of mouse neutrophils as well as the involvement of tyrosine protein kinases and phosphatases in this process have been studied. Peritoneal evoked neutrophils of NMRI strain mice were incubated with 0.01-100 nM insulin for 1-60 min at 22, 30, or 37°C and activated by 0.1-50 μM N-formyl-methionyl-leucyl-phenylalanine (fMLP). The production of reactive oxygen species (ROS) by neutrophils was monitored by luminol-dependent chemiluminescence. We found that 125I-labeled insulin binding by mouse neutrophils occurred with saturation and high affinity. Insulin itself did not change the basal level of the ROS production but could modulate fMLP-induced respiratory burst. The effect of insulin depended on temperature and duration of pretreatment of the neutrophils with insulin and the concentration combination of the insulin and fMLP. The tyrosine kinase inhibitor tyrphostin 51 decreased the fMLP-induced respiratory burst significantly. Insulin did not change the fMLP response of neutrophils pretreated with tyrphostin. However, the effect of tyrphostin on the response to 50 μM fMLP was considerably decreased in neutrophils treated with insulin. There was no such effect during activation by 5 μM fMLP, for which the priming effect of insulin was not observed. Insulin did not increase the fMLP-induced respiratory burst in neutrophils treated with the protein phosphatase inhibitors orthovanadate and pyrophosphate. If the inhibitors were added after insulin, the combined effect was nearly additive. It is possible that priming by insulin of the fMLP-induced respiratory burst is triggered by tyrosine phosphorylation, realized with its participation, and involves the signaling pathways initiated by tyrosine phosphorylation but subsequently is not dependent on the latter. The role of protein phosphatases in priming by insulin is of little importance. The data indirectly confirm the idea that priming of the neutrophil respiratory burst is a result of crosstalk of signaling pathways of the insulin and fMLP receptors with the participation of tyrosine phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Mayanskii, A. N., and Mayanskii, D. N. (1989) Sketches about Neutrophil and Macrophage [in Russian], Nauka, Novosibirsk.

    Google Scholar 

  • Thelen, M., Dewald, B., and Baggiolini, M. (1993) Physiol. Rev., 73, 797-821.

    PubMed  Google Scholar 

  • Fussganger, R. D., Kahn, C. R., Roth, J., and De Meyts, P. (1976) J. Biol. Chem., 251, 2761-2769.

    PubMed  Google Scholar 

  • Chen, P.-M., Kwan, S.-H., Hwang, T.-S., Chiang, B. N., and Chou, Ch.-K. (1983) Blood, 62, 251-255.

    PubMed  Google Scholar 

  • Oldenborg, P.-A., and Sehlin, J. (1998) J. Leukoc. Biol., 63, 203-208.

    PubMed  Google Scholar 

  • Spagnoli, A., Spadoni, G. L., Sesti, G., Del Principe, D., Germani, D., and Boscherini, B. (1995) Horm. Res., 43, 286-293.

    PubMed  Google Scholar 

  • Jin, G. F., Guo, Y. S., Ball, C., and Houston, C. W. (1993) Regul. Pept., 49, 125-131.

    PubMed  Google Scholar 

  • Fu, Y.-K., Arkins, S., Wang, B. S., and Kelley, K. W. (1991) J. Immunol., 146, 1602-1608.

    PubMed  Google Scholar 

  • Oldenborg, P.-A. (1999) Inflamm. Res., 48, 404-411.

    PubMed  Google Scholar 

  • Hallett, M. B., and Lloyds, D. (1997) The Molecular and Ionic Signaling of Neutrophils, Landes Bioscience, Austin, Texas, USA.

    Google Scholar 

  • Downey, G. P., Fukushima, T., Fialkow, L., and Waddell, T. K. (1995) Seminars Cell. Biol., 6, 345-356.

    Google Scholar 

  • Hallett, M. B., and Lloyds, D. (1995) Immunol. Today, 16, 264-268.

    PubMed  Google Scholar 

  • Pillinger, M. H., Feoktistov, A. S., Capodici, C., Solitar, B., Levy, J., Oei, T. T., and Philips, M. R. (1996) J. Biol. Chem., 271, 12049-12056.

    PubMed  Google Scholar 

  • Aleksandrovsky, Ya. A. (1998) Biochemistry (Moscow), 63, 1249-1257.

    Google Scholar 

  • Shah, S. V., Wallin, J. D., and Eilen, S. D. (1983) J. Clin. Endocrinol. Metab., 57, 402-409.

    PubMed  Google Scholar 

  • Cheathman, B., and Kahn, C. R. (1995) Endocrin. Rev., 16, 117-142.

    Google Scholar 

  • Saltiel, A. R. (1996) Am. J. Physiol., 270, E375-E385.

    PubMed  Google Scholar 

  • Virkamaki, A., Ueki, K., and Kahn, C. R. (1999) J. Clin. Invest., 103, 931-943.

    PubMed  Google Scholar 

  • Nakipova, O. V., Kokoz, Yu. M., Freidin, A. A., Safronova, V. G., and Lazarev, A. V. (1987) Fiziol. Zh. SSSR im. I. M. Sechenova, 73, 492-498.

    PubMed  Google Scholar 

  • Van Dyke, K., Van Scott, M. R., and Castranova, V. (1986) Meth. Enzymol., 132, 498-507.

    PubMed  Google Scholar 

  • Kitchen, E., Rossi, A. G., Condliffe, A. M., Haslett, C., and Chilvers, E. R. (1996) Blood, 88, 4330-4337.

    PubMed  Google Scholar 

  • Allen, R. C., and Loose, L. D. (1976) Biochem. Biophys. Res. Commun., 69, 245-252.

    PubMed  Google Scholar 

  • Vladimirov, Yu. A., and Sherstnev, M. P. (1989) Chemiluminescence of Animal Cells, in Advances in Science and Technology [in Russian], Vol. 24, VINITI, Moscow.

    Google Scholar 

  • Salacinski, P. R., McLean, C., Sykes, J. E., Clement-Jones, V. V., and Lowry, P. J. (1981) Analyt. Biochem., 117, 136-146.

    PubMed  Google Scholar 

  • Jorgensen, K. H., and Larsen, U. D. (1980) Diabetologia, 16, 546-554.

    Google Scholar 

  • Lundell, D., Lunn, C., Dalgarno, D., Fossetta, J., Greenberg, R., Reim, R., Grace, M., and Narula, S. (1991) Protein Eng., 4, 335-341.

    PubMed  Google Scholar 

  • Gabdoulkhakova, A. G., Safronova, V. G., and Sadovnikov, V. B. (2000) Dokl. RAN, 372, 73-76.

    Google Scholar 

  • De Nardin, E., Radel, S. J., and Genco, R. J. (1991) Biochem. Biophys. Res. Commun., 174, 84-89.

    PubMed  Google Scholar 

  • Levitzki, A., and Gazit, A. (1995) Science, 267, 1782-1788.

    PubMed  Google Scholar 

  • Krutetskaya, Z. I., and Lebedev, O. E. (1998) Roles of Tyrosine Phosphorylation in Regulation of Activity of Ionic Channels of Cell Membranes [in Russian], Aiyu, St. Petersburg.

    Google Scholar 

  • Cartwright, P. H., Ilchyshyn, A., Ilderton, E., and Yardley, H. J. (1988) Br. J. Dermatol., 118, 333-338.

    PubMed  Google Scholar 

  • Gutierrez, J., Parrizas, M., Vaestro, M. A., Navarro, I., and Plisetskaya, E. M. (1995) J. Endocrinol., 146, 35-44.

    PubMed  Google Scholar 

  • Hoffman, J. F., Keil, M. L., Riccobene, T. A., Omann, G. M., and Linderman, J. J. (1996) Biochemistry, 35, 13047-13055.

    PubMed  Google Scholar 

  • Coles, R. B., Ranney, R. R., Freer, R. J., and Carchman, R. A. (1989) J. Leukoc. Biol., 45, 529-537.

    PubMed  Google Scholar 

  • Wagerle, L. C., Kim, S. J., and Russo, P. (1996) Am. J. Physiol., 270, 4645-4650.

    Google Scholar 

  • Wisnieski, B. J., Parkes, J. G., Huang, Y. O., and Fox, C. F. (1974) Proc. Natl. Acad. Sci. USA, 71, 4381-4385.

    PubMed  Google Scholar 

  • Wang, J. M., Hishinuma, A., Oppenheim, J. J., and Matsushima, K. (1993) Cytokine, 5, 264-275.

    PubMed  Google Scholar 

  • Bengis-Garber, G., and Gruener, N. (1996) Cell Signal., 8, 291-296.

    PubMed  Google Scholar 

  • Ortmeyer, H. K. (1997) J. Basic Clin. Physiol. Pharmacol., 8, 223-235.

    PubMed  Google Scholar 

  • Inoue, G., Cheatham, B., Emkey, R., and Kahn, C. R. (1998) J. Biol. Chem., 273, 11548-11555.

    PubMed  Google Scholar 

  • Snyderman, R., and Pike, M. C. (1984) Ann. Rev. Immunol., 2, 257-281.

    Google Scholar 

  • Torres, M., and Ye, R. D. (1996) J. Biol. Chem., 271, 13244-13249.

    PubMed  Google Scholar 

  • Seger, B., and Krebs, E. G. (1995) FASEB J., 9, 726-735.

    PubMed  Google Scholar 

  • Zhang, H., Garlichs, C. D., Mugge, A., and Daniel, W. G. (1998) J. Physiol. (L), 513, 359-367.

    Google Scholar 

  • Torres, M., Hall, F. L., and O.Neill, K. (1993) Immunol., 150, 1563-1577.

    Google Scholar 

  • Takemura, O. S., Banno, Y., and Nozawa, Y. (1997) Biochem. Pharmacol., 53, 1503-1510.

    PubMed  Google Scholar 

  • Rane, M. J., Carrithers, S. L., Arthur, J. M., Klein, J. B., and McLeish, K. R. (1997) J. Immunol., 159, 5070-5078.

    PubMed  Google Scholar 

  • Grinstein, S., and Furuya, W. (1992) J. Biol. Chem., 267, 18122-18125.

    PubMed  Google Scholar 

  • Dusi, S., Donini, M., and Rossi, F. (1996) Biochem. J., 314, 409-412.

    PubMed  Google Scholar 

  • Downey, G. P., Butler, J. R., Tapper, H., Fialkow, L., Saltiel, A. R., Rubin, B. B., and Grinstein, S. (1998) J. Immunol., 160, 434-443.

    PubMed  Google Scholar 

  • Yagisawa, M., Saeki, K., Okuma, E., Kitamura, T., Kitagawa, S., Hirai, H., Yazaki, Y., Takaku, F., and Yuo, A. (1999) Exp. Hematol., 27, 1063-1076.

    PubMed  Google Scholar 

  • Li, Y. P., Curley, G., Lopez, M., Chavez, M., Glew, R., Aragon, A., Kumar, H., and Baca, O. G. (1996) Acta Virol., 40, 263-272.

    PubMed  Google Scholar 

  • Feraille, E., Carranza, M. L., Gonin, S., Beguin, P., Pedemonte, C., Rousselot, M., Caverzasio, J., Geering, K., Martin, P. V., and Favre, H. (1999) Mol. Biol. Cell, 10, 2847-2859.

    PubMed  Google Scholar 

  • Nakao, S., Moriya, Y., Furuyama, S., Niederman, R., and Sugiya, H. (1998) Cell Biol. Int., 22, 331-337.

    PubMed  Google Scholar 

  • Fernandez, R., and Suchard, S. J. (1998) J. Immunol., 160, 5154-5162.

    PubMed  Google Scholar 

  • Yan, S. R., and Novak, M. J. (1999) FEBS Lett., 451, 33-38.

    PubMed  Google Scholar 

  • Nauseef, W. M. (1991) J. Biol. Chem., 266, 5911-5917.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safronova, V.G., Gabdoulkhakova, A.G., Miller, A.V. et al. Variations of the Effect of Insulin on Neutrophil Respiratory Burst. The Role of Tyrosine Kinases and Phosphatases. Biochemistry (Moscow) 66, 840–849 (2001). https://doi.org/10.1023/A:1011944400908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011944400908

Navigation