Skip to main content
Log in

Novel Pharmacokinetic Modelling of Transdermal Nitroglycerin

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To construct a pharmacokinetic (PK) model and to determine population PK parameters of nitroglycerin (GTN), 1,2-dinitroglycerin (1,2-GDN), and 1,3-dinitroglycerin (1,3-GDN).

Methods. Data were obtained in thirty healthy volunteers following a single dose of a GTN reservoir transdermal patch. Blood samples were obtained just before and at 0.5, 1, 2, 3, 4, 6, 8, 12, 14, and 24 hours after the patch application and 1 hour after its removal. GTN, 1,2-GDN, and 1,3-GDN concentrations were determined using HPLC and simultaneously best fitted using a first-pass mixed-order release one-compartment PK model. Individual estimates (ADAPT-II) were used as priors for a population PK analysis (IT2S). Fitted parameters included the percentage (A) of the nitroglycerin dose reaching the systemic circulation that was released from the patch by a first-order process (K1); two absorption (ka1 and ka2), two metabolite formation (kfl and kf2) and one metabolite elimination (k(m)) rate constants; and three volumes of distribution Vc/F, V2/F and V3/F.

Results. Nitroglycerin mean population parameter estimates and inter-individual variability (CV%) were: A 35% (65), K1, 0.06 h−1(91), ka1 5 h−1(46), ka2 0.47 h−1 (39), kf1 11 h−1(42), kf2 0.6 h−1(34), k(m) 1.4 h−1(29), Vc/F 6 L(31), V2 /F 73 L(34), and V3 /F 23 L(29). The average elimination half-lives for GTN and the two metabolites were 5 and 32 minutes, respectively.

Conclusions. The proposed PK model fitted observed concentrations of GTN, 1,2-GDN and 1,3-GDN very well. This model should be useful to predict drug and metabolite concentrations and to assess bioequivalence of two transdermal formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. H. Taylor. The role of transdermal nitroglycerin in the treatment of coronary heart disease. Am. Heart J. 112(1):197–207 (1986).

    Google Scholar 

  2. J. Abrahams. Transdermal nitroglycerin in angina pectoris. Eur. Heart J. 10(Suppl.A):11–19 (1989).

    Google Scholar 

  3. M. Gibaldi and D. Perrier. Pharmacokinetics, 2nd ed. New York: Marcel Dekker, 1982.

    Google Scholar 

  4. D. K. Yu, R. L. Williams, L. Z. Benet, E. T. Lin, D. H. Giesing. Pharmacokinetics of nitroglycerin and metabolites in humans following oral administration. Biopharm. Drug Dispos. 9:557–65 (1988).

    Google Scholar 

  5. F. W. Lee, J. Hu, C. H. Metzler, L. Z. Benet. Nitroglycerin dinitrate metabolites do not affect the pharmacokinetics and pharmacodynamics of nitroglycerin in dog: A preliminary report. J. Pharmacokinet. Biopharm. 21(2):163–73 (1993).

    Google Scholar 

  6. S. H. Cury and S. M. Aburawi. Analysis, disposition and pharmacokinetics of nitroglycerin. Biopharm. Drug Dispos. 6:234–80 (1985).

    Google Scholar 

  7. D. Z. D'Argenio and A. Schumitzky. ADAPT-II user's guide. Biomedical Simulations Resource. University of Southern California, Los Angeles: 1992.

    Google Scholar 

  8. D. Collins and A. Forrest. IT2S user's guide. State University of New York at Buffalo, Buffalo: 1995.

    Google Scholar 

  9. S. K. Chandrasekaran, W. Bayne, and J. E. Shaw. Pharmacokinetics of drug permeation through human skin. J. Pharm. Sci. 67:1370–74 (1978).

    Google Scholar 

  10. C. D. Black. Transdermal drug delivery system. U.S. Pharmacist 49–75 (1982).

  11. R. H. Guy, and J. Hadgraft. Kinetic analysis of transdermal nitroglycerin delivery. Pharm. Res. 2:206–211 (1985).

    Google Scholar 

  12. R. H. Guy and J. Hadgraft. Pharmacokinetic interpretation of the plasma levels of clonidine following transdermal delivery. J. Pharm. Sci. 74(9):1016–18 (1985).

    Google Scholar 

  13. R. H. Guy and J. Hadgraft. The prediction of plasma levels of drugs following transdermal application. J. Control. Rel. 1:177–82 (1985).

    Google Scholar 

  14. R. H. Guy and J. Hadgraft. Interpretation and prediction of the kinetics of transdermal drug delivery: oestradiol, hyoscine and atenolol. Int. J. Pharm. 32:159–63 (1986).

    Google Scholar 

  15. B. J. McDonald and B. M. Bennett. Biotransformation of glyceryl trinitrate by rat aortic cytochrome P450. Biochem. Pharmacol. 45:268–270 (1993).

    Google Scholar 

  16. B. J. McDonald, G. J. Monkewich, P. G. Long, and D. J. Anderson. Effect of dexamethasone treatment on the biotransformation of glyceryl trinitrate: cytochrome P450 3A1 mediated activation of rat aortic guanylyl cyclase by glyceryl trinitrate. Can. J. Physiol. Pharmacol. 72:1513–1520 (1994).

    Google Scholar 

  17. A. A. Weber, T. Neuhaus, C. Seul, et al. Biotransformation of glyceryl trinitrate by blood platelets as compared to vascular smooth muscle cells. Eur. J. Pharmacol. 309:209–213 (1996).

    Google Scholar 

  18. E. Nakashima, P. K. Noonan, and L. Z. Benet. Transdermal bioavailability and first-pass skin metabolism: a preliminary evaluation with nitroglycerin. J. Pharmacokinet. Biopharm. 15:423–437 (1987).

    Google Scholar 

  19. T. O. Klemsdal, K. Gjesdal, and J. E. Bredesen. Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin. Eur. J. Clin. Pharmacol. 43:625–628 (1992).

    Google Scholar 

  20. K. Gjesdal, T. O. Klemsdal, E. O. Rykke, and J. E. Bredesen. Transdermal nitrate therapy: bioavailability during exercise increases transiently after the daily change of patch. Br. J. Clin. Pharmacol. 31:560–562 (1991).

    Google Scholar 

  21. R. A. Lefebvre, M. G. Bogaert, O. Teirlynck, A. Sioufi, and J. P. Dubois. Influence of exercise on nitroglycerin plasma concentrations after transdermal application. Br. J. Clin. Pharmacol. 30:292–296 (1990).

    Google Scholar 

  22. S. H. Curry, and H. R. Kwon. Influence of posture on plasma nitroglycerin. Br. J. Clin. Pharmacol 19:403–404 (1985).

    Google Scholar 

  23. R. Heidemann, C. Beckenbauer, and B. G. Woodcock. Effect of posture on glyceryl trinitrate plasma concentrations following transdermal application. Br. J. Clin. Pharmacol. 23:246–247 (1987).

    Google Scholar 

  24. J. X. Sun, A. J. Piraino, J. M. Morgan, J. C. Jushi, K. Chan, V. A. John, and W. R. Good. Application of a stable isotope technique for the bioequivalence study of two transdermal nitroglycerin systems. Amer. J. Ther. 1:15–21 (1994).

    Google Scholar 

  25. M. G. Bogaert. Clinical pharmacokinetics of nitrates. Cardiovasc. Drugs Ther. 8:693–99 (1994).

    Google Scholar 

  26. F. D. Panti, C. Luca, F. Pamparana, L. Bianco, L. D'Angelo, M. Caravaggi, et al. Bioavailability study of three transdermal nitroglycerin preparation in normal volunteers. Curr. Ther. Res. 46:111–120 (1989).

    Google Scholar 

  27. A. McAllister, H. Mosberg, J. A. Settlage, and J. A. Steiner. Plasma levels of nitroglycerin generated by three nitroglycerin patch preparations, Nitradisc, Transderm-Nitro and Nitro-Dur and one ointment formulation, Nitrobid. Br. J. Clin. Pharmacol. 21:365–69 (1986).

    Google Scholar 

  28. B. Berner, and V. A. John. Pharmacokinetic characterisation of transdermal delivery system. Clin. Pharmacokinet. 26(2):121–134 (1994).

    Google Scholar 

  29. R. L. Williams, K. M. Thakker, V. John, E. T. Lin, W. Liang-Gee, and L. Z. Benet. Nitroglycerin absorption from transdermal systems: Formulation effects and metabolite concentrations. Pharm. Res. 8(6):744–49 (1991).

    Google Scholar 

  30. P. K. Noonan, M. A. Gonzald, D. Ruggirello, J. Tomlinson, E. Babcock-Atkinson, M. Ray et al.. Relative bioavailability of a new transdermal nitroglycerin delivery system. J. Pharm. Sci. 75:688–91 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auclair, B., Sirois, G., Ngoc, A.H. et al. Novel Pharmacokinetic Modelling of Transdermal Nitroglycerin. Pharm Res 15, 614–619 (1998). https://doi.org/10.1023/A:1011942213508

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011942213508

Navigation