Skip to main content
Log in

Rheological Properties of Blood in Athletes

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Rheological properties of blood were studied in subjects with high physical activity (athletes). It was found that the whole blood viscosity decreased under conditions of relative rest. The use of the concept of hemorheological profiles made it possible to reveal different profiles in subjects exposed to different courses of training exercise. The relationship between the rheological properties of blood and the total work capacity in humans was established. The typical parameter of profiles in subjects with high physical activity was high erythrocyte deformability associated mainly with erythrocyte form and viscoelastic properties of its membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Seleznev, S.A., Vashetina, S.M., and Mazurkevich, G.S., Kompleksnaya otsenka krovoobrashcheniya v eksperimental'noi patologii (Complex Estimation of Blood Circulation in Experimental Pathology), Leningrad, Meditsina, 1985.

    Google Scholar 

  2. Seleznev, S.A., Nazarenko, G.I., and Zaitsev, V.S., Klinicheskie aspekty mikrogemotsirkulyatsii (Clinical Aspects of Microhemocirculation), Leningrad, Meditsina, 1985.

    Google Scholar 

  3. Levtov, V.A., Regirer, S.A., and Shadrina, N.Kh., Reologiya krovi (Blood Rheology), Moscow, Meditsina, 1982.

    Google Scholar 

  4. Caro, C., Pedli, T., Shroter, R., and Sid, U., The Mechanics of the Circulation, Oxford: Oxford Univ., 1978. Translated under the title Mekhanika krovoobrashcheniya, Moscow, Mir, 1981.

    Google Scholar 

  5. Chmiel, H., Determination of Blood Rheological Parameters and Clinical Application, in Blood: Rheology, Hemolysis, Gas and Surface Interaction, Basel, Karger, 1979.

    Google Scholar 

  6. Gaiton, A., Fiziologiya krovoobrashcheniya. Minutnyi ob”em serdtsa i ego regulyatsiya (Physiology of Blood Circulation: Cardiac Output and Its Regulation), Moscow, Meditsina, 1969.

    Google Scholar 

  7. Gaehtgens, P., Physiological Relevance of RBC Aggregation the “Con” View, Biorheol., 1995, vol. 32, p. 105.

    Google Scholar 

  8. Stuart, J. and Nash, G.B., Red Cell Deformability and Hematological Disorders, Blood Rev., 1990, no. 4, p. 141.

  9. Murav'ev, A.V. and Simakov, M.I., Complex Estimation of Blood Circulation during Muscular Activity, Teor. Prakt. Fiz. Kult., 1983, no. 10, p. 15.

  10. Murav'ev, A.V. and Simakov, M.I., Rheological Properties of Blood in Athletes, Teor. Prakt. Fiz. Kult., 1988, no. 10, p. 41.

  11. Vikulov, A.D., Rheological Properties of Blood in Athletes of Different Qualification, Teor. Prakt. Fiz. Kult., 1999, no. 1, p. 39.

  12. Vikulov, A.D., Mel'nikov, A.A., and Osetrov, I.A., Erythrocyte Deformability in Athletes, Fiziol. Chel., 1999, vol. 25, no. 4, p. 136.

    Google Scholar 

  13. Brun, J.-F., Sekkat, M., Lagoueyte, C., et al., Relationships between Fitness and Blood Viscosity of Untrained Normal Short Children, Clin. Hemorheol., 1989, vol. 9, p. 953.

    Google Scholar 

  14. Brun, J.-F., Fons, C., Raynand, E., et al., Influence of Circulating Lactate of Blood Rheology during Exercise in Professional Football Players, Rev. Port. Hemorheol., 1991, vol. 5, p. 219.

    Google Scholar 

  15. Brun, J.-F., Monier, J.F., Charpiat, A., et al., Longitudinal Study of the Relationship between Red Cell Aggregation at Rest and the Lactate Response to Exercise after Training in Young Gymnasts, Clin. Hemorheol., 1995, vol. 15, p. 147.

    Google Scholar 

  16. Karpman, V.P. and Lyubina, B.G., Dinamika krovoobrashcheniya u sportsmenov (Dynamics of Blood Circulation in Athletes), Moscow, Fizk. Sport, 1982.

    Google Scholar 

  17. Makarova, G.A. and Loktev, S.A., Kartina krovi i funktsional'noe sostoyanie organizma sportsmenov (Blood Picture and Functional State of Athletes’ Bodies), Krasnodar, 1990.

  18. Golovina, L.L., Krov’ i rabotosposobnost' (Blood and Work Capacity), Moscow, 1995.

  19. Copley, A.L., Apparent Viscosity and Wall Adherence of Blood Systems, in Flow Properties of Blood and Other Biological Systems, London, Pergamon, 1960.

    Google Scholar 

  20. Aulik, I.V., Opredelenie fizicheskoi rabotosposobnosti v klinike i sporte (Determination of Physical Work Capacity in Clinic and Sports), Moscow: Meditsina, 1990.

    Google Scholar 

  21. Karpman, V.L., Belotserkovskii, Z.B., and Gudkov, I.A., Issledovanie fizicheskoi rabotosposobnosti sportsmenov (Analysis of Physical Work Capacity in Athletes), Moscow, Fizk. Sport, 1974.

    Google Scholar 

  22. Gol'dberg, D.I. and Levina, G.D., Diametr eritrotsitov v norme i patologii (Normal and Pathological Erythrocyte Diameter), Tomsk, 1969.

  23. Zakharova, I.B., Methods of Studying Erythrocyte Deformability (Review), Lab. Delo, 1983, no. 9, p. 3.

  24. Dintenfass, L., Thixopropy of Blood and Proneness to Thrombosis Formation, Circul. Res., 1962, vol. 11, p. 233.

    Google Scholar 

  25. Katyukhin, L.N., Rheological Properties of Red Blood Cells: Modern Research Methods, Fiziol. Zh. im. I.M. Sechenova, 1995, vol. 81, no. 6, p. 122.

    Google Scholar 

  26. Dintenfass, L., Red Cell Rigidity, “Tk”, and Filtration, Clin. Hemorheol., 1985, no. 5, p. 241.

  27. Vikulov, A.D., The Basics of Changes in Rheological Properties of Blood in Humans and Animals during Prolonged Adaptation to Muscular Exercise, Doctoral (Biol.) Dissertation, Moscow, 1997.

  28. Kozlov, V.I. and Tupitsin, I.O., Mikrotsirkulyatsiya pri myshechnoi deyatel'nosti (Microcirculation during Muscular Activity), Moscow, Fizk. Sport, 1982.

    Google Scholar 

  29. Suloev, E.P., The Changes in Rheological Properties of Blood, Transcapillary Exchange, Gas Composition, and the Acid-Base State of Blood during Adaptation to Muscular Exercise, Cand. Sci. (Biol.) Dissertation, Yaroslavl, 1995.

  30. Vikulov, A.D., Dynamics of Rheological Properties of Blood during Quick and Prolonged Adaptation to Muscular Exercise, Cand. Sci. (Biol.) Dissertation, Yaroslavl, 1985.

  31. Martins, E. and Silva, J., Blood Rheological Adaptation to Physical Exercise, Rev. Port. Hemorheol., 1988, vol. 2, p. 63.

    Google Scholar 

  32. Ernst, E. and Matrai, A., Blood Rheology in Athletes, J. Sports Med. Phys. Fitness, 1985, vol. 25, no. 4, p. 207.

    Google Scholar 

  33. Stoltz, J. and Donner, M., Red Blood Cell Aggregation: Measurement and Clinical Applications, Turk. J. Med. Sci., 1991, vol. 15, p. 26.

    Google Scholar 

  34. Chien, S., Rheology of Sickle Cells and Erythrocyte Content, Blood Cells, 1977, vol. 3, no. 2, p. 283.

    Google Scholar 

  35. Folkov, B. and Nil, E., Krovoobrashchenie (Blood Circulation), Moscow, Meditsina, 1976.

    Google Scholar 

  36. Singer, S., Nicolson, G., The Fluid Mosaic Model of the Structure of Cell Membranes, Science, 1972, vol. 175, p. 720.

    Google Scholar 

  37. Boldyrev, A.A., Biologicheskie membrany i transport ionov. Uchebnoe posobie (Biological Membranes and Ion Transport: Handbook), Moscow, Mosk. Gos. Univ., 1985.

    Google Scholar 

  38. Evans, E. and Scalak, R., Mechanics and Thermodynamics of Biomembrane, Boca Raton, CRC Press, 1980.

    Google Scholar 

  39. Chien, S. and Sung, L., Molecular Basis of Red Cell Membrane Rheology, Biorheol., 1990, vol. 27, p. 327.

    Google Scholar 

  40. Evans, E. and Needham, D., Physical Properties of Surfactant Bilauer Membranes: Thermal Transitions, Elasticity, Rigidity, Cohesion, and Colloidal Interactions, S. Physiol. Chem., 1987, vol. 91, p. 4219.

    Google Scholar 

  41. Tolkacheva, N.V., Levachev, M.M., Lupinovich, V.L., and Nikolenko, O.V., Lipid Composition of Erythrocyte Membranes and Blood Plasma in Athletes, Fiziol. Chel., 1992, vol. 18, no. 3, p. 104.

    Google Scholar 

  42. Popichev, M.I., Konoshenko, S.V., and Tolkacheva, N.V., Hemoglobin Affinity for Oxygen and the State of Erythrocyte Metabolism in Athletes during Intense Muscular Work, Fiziol. Chel., 1997, vol. 23, no. 5, p. 138.

    Google Scholar 

  43. Storozhok, S.A., Sannikov, A.G., and Zakharov, Yu.M., Molekulyarnaya struktura membran eritrocytov i ikh mekhanicheskie svoistva (Molecular Structure of Erythrocyte Membranes and Their Mechanical Properties), Tyumen, Tyumensk. Gos. Univ., 1997.

    Google Scholar 

  44. Kreps, E.M., Lipidy kletochnykh membran. Adaptatsionnaya funktsiya lipidov (Cellular Membrane Lipids: Adaptation Function of Lipids), Leningrad, 1981.

  45. Lopukhin, Yu.M., Archakov, A.I., Vladimirov, Yu.A., and Kogan, E.M., Kholesterinoz (kholesterin membran, teoreticheskie i klinicheskie aspekty) (Cholesterosis (Membrane Cholesterol, Theoretical and Clinical Aspects)), Moscow, Meditsina, 1983.

    Google Scholar 

  46. Osetrov, I.A., Vikulov, A.D., Baranov, A.A., and Mel'nikov A.A., Na,K-ATPase Activity and Erythrocyte Deformability in Subjects with High Physical Activity, Tezisy dokladov 2-i mezhdunarodnoi nauchnoi konferentsii po mikrotsirkulyatsii i gemoreologii (Proc. 2nd Int. Conf. on Microcirculation and Hemorheology), Yaroslavl, 1999.

  47. Boldyrev, A.A., The Role of Lipids in Functioning of Na, K-activated ATPase, Biol. Nauki, 1979, no. 3, p. 5.

  48. Zakharova, N.B., Khvostova, N.V., and Shvedova, R.F., The Importance of Impairment of Protein and Lipid Composition of Erythrocyte Membranes for Reducing Fluidity Properties of Blood under Extreme Conditions, Vopr. Med. Khim., 1991, vol. 37, no. 1, p. 53.

    Google Scholar 

  49. Panasenko, O.M., Vol'nova, T.M., Azizova, O.A., and Vladimirov, Yu. A., Lipid Peroxidation as a Factor Providing Cholesterol Accumulation in Cells in Case of Atherogenesis, Byull. Eksp. Biol. Med., 1989, vol. 106, no. 9, p. 277.

    Google Scholar 

  50. Syurin, A.A., Kulagin, Yu.I., and Kuznetsov, N.S., Lipid Peroxidation of Cell Membranes and Na,K-ATPase Function in Hypertonics, Krovoobrashchenie, 1989, vol. 22, no. 6, p. 55.

    Google Scholar 

  51. Vel'tishchev, Yu.E., Yur'eva, E.A., and Vozdvizhenskaya, E.S., Biologically Active Metabolites of Membrane Glycerophospholipids, Vopr. Med. Khim., 1987, vol. 33, no. 2, p. 3.

    Google Scholar 

  52. Lapotnikov, V.A. and Moiseev, S.I., Microcirculatory Homeostasis and Blood Rheology in Case of Peripheral and Coronary Atherosclerosis, Vrach. Delo, 1988, no. 4, p. 60.

  53. Rosenson, R., McCormick, A., and Uretz, E., Distribution of Blood Viscosity Values and Biochemical Correlates in Healthy Adults, Clin. Chem., 1996, vol. 42, no. 8, p. 1189.

    Google Scholar 

  54. Boldina, V.I., Dynamics of Water Balance of Blood during Quick and Prolonged Adaptation to Muscular Exercise, Cand. Sci. (Biol.) Dissertation, Moscow, 1993.

  55. Smirnov, I.Yu., Dynamics of Rheological Properties of Blood during Laser Reflexotherapy Followed by Muscular Exercise, Cand. Sci. (Biol.) Dissertation, Yaroslavl, 1995.

  56. Kozhukhova, V.K., Rheological Properties of Blood during Adaptation and Disadaptation to Muscular Exercise of Different Strength and Duration, Cand. Sci. (Biol.) Dissertation, Yaroslavl, 1996.

  57. Murav'ev A.V., Simakov, M.I., and Zaitsev, L.G., Some Hemorheological Mechanisms of Athlete's Organism Adaptation to Muscular Exercise, Fiziol. Chel., 1990, vol. 16, no. 5, p. 63.

    Google Scholar 

  58. Vikulov, A.D. and Mel'nikov, A.A., Erythrocyte Deformability as a Key Parameter of Changes in Rheological Properties of Blood during Prolonged Adaptation Of the Human Organism to Systemic Muscular Exercise, Mater. mezhdunarodnoi konferentsii po mikrotsirkulyatsii (Proc. Int. Conf. on Microcirculation), Yaroslavl, 1997, p. 167.

  59. Reinhart, W.G. and Chien, S., The Time Course of the Filtration Test as a Model for Microcircular Plugging by White Cells and Hardened Red Cells, Microvasc. Res., 1987, vol. 34, no. 1, p. 1.

    Google Scholar 

  60. Nakache, M., Caprany, A., Dimicoli, S., and Massonet, S., Relationship between Deformability of Red Blood Cells and Oxygen Transfer, Clin. Hemorheol., 1983, vol. 3, p. 177.

    Google Scholar 

  61. Shiga, T., Maeda, N., and Kon, K., Dependence of Oxygen Release on Shear-Induced Red Cell Deformation, in Progress in Microcirculation Research, Courtice, F. et al., Eds., Keisington, 1984.

  62. Schmid-Schonbein, H. and Gaehtgens, P., What is Red Cell Deformability?, Scand. J. Clin. Lab. Invest., 1981, vol. 41, no. 156, p. 13.

    Google Scholar 

  63. Bohler, T., Wagner, S., Seiberth, V., et al., Blood Rheology and Retinopathy in Premature Infants with Very Low Birth Weight, Clin. Hemorheol., 1995, vol. 15, no. 3, p. 305.

    Google Scholar 

  64. Hochmuth, R.M., Marple, R.N., and Sutera, S.P., Capillary Blood Flow. 1. Erythrocyte Deformation in Glass Capillaries, Microvasc. Res., 1970, vol. 2, p. 409.

    Google Scholar 

  65. Evans, E., Mochandas, N., and Asung, A., Static and Dynamic Rigidities of Normal and Sickle Erythrocytes: Major Influence of Cell Hemoglobin Concentration, J. Clin. Invest., 1984, vol. 73, no. 2, p. 477.

    Google Scholar 

  66. Secomb, T.W. and Hsu, R., A Model for Red Blood Cell Motion and Blood Flow Resistance in Nonuniform Capillaries, Int. J. Microcirc. Clin. Exper., 1996, s. 1, vol. 16, p. 140.

    Google Scholar 

  67. Ivanov, K.P., Progress and Theoretical Arguments in Research on Microcirculation, Fiziol. Zh. im. I.M. Sechenova, 1995, vol. 81, no. 6, p. 1.

    Google Scholar 

  68. Nakache, M., Caprany, A., Dimicoli, S., and Massonet, S., Relationship between Deformability of Red Blood Cells and Oxygen Transfer, Clin. Hemorheol., 1983, vol. 3, p. 177.

    Google Scholar 

  69. Galenok, V.A., Gostinskaya, E.V., and Dikker, V.E., Gemoreologiya pri narusheniyakh uglevodnogo obmena (Hemorheology in Case of Impaired Carbohydrate Exchange), Novosibirsk, Nauka, 1987.

    Google Scholar 

  70. Burton, A.S., Role of Geometry, Size, and Form of the Erythrocyte in the Microcirculation, Fed. Prog., 1988, vol. 25, p. 1753.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vikulov, A.D., Mel'nikov, A.A. & Osetrov, I.A. Rheological Properties of Blood in Athletes. Human Physiology 27, 618–625 (2001). https://doi.org/10.1023/A:1011928814846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011928814846

Keywords

Navigation