Skip to main content
Log in

Transbuccal Delivery of Acyclovir: I. In Vitro Determination of Routes of Buccal Transport

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To determine the major routes of buccal transport of acyclovir and to examine the effects of pH and permeation enhancer on drug permeation.

Methods. Permeation of acyclovir across porcine buccal mucosa was studied by using side-by-side flow through diffusion cells at 37°C. The permeability of acyclovir was determined at pH range of 3.3 to 8.8. Permeability of different ionic species was calculated by fitting the permeation data to a mathematical model. Acyclovir was quantified using HPLC.

Results. Higher steady state fluxes were observed at pH 3.3 and 8.8. The partition coefficient (1-octanol/buffer) and the solubility of acyclovir showed the same pH dependent profile as that of drug permeation. In the presence of sodium glycocholate (NaGC) (2−100 mM), the permeability of acyclovir across buccal mucosa was increased 2 to 9 times. This enhancement was independent of pH and reached a plateau above the critical micelle concentration of NaGC. The permeabilities of anionic, cationic, and zwitterionic species were 3.83 × 10−5, 4.33 × 10−5, and 6.24 × 10−6cm/sec, respectively.

Conclusions. The in vitropermeability of acyclovir across porcine buccal mucosa and the octanol-water partitioning of the drug were pH dependent. A model of the paracellular permeation of the anionic, cationic, and zwitterionic forms of acyclovir is consistent with these data. The paracellular route was the primary route of buccal transport of acyclovir, and the enhancement of transbuccal transport of acyclovir by sodium glycocholate (NaGC) appeared to operate via this paracellular route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. B. Gandhi and J. R. Robinson. Oral cavity as a site for bioadhesive drug delivery. Adv. Drug Del. Rev. 13:43-74 (1994).

    Google Scholar 

  2. H. Zhang and J. R. Robinson. Routes of drug transport across oral mucosa in M. J. Rathbone (ed.), Oral mucosal drug delivery, Marcel Dekker, Inc., New York, 1996, pp. 51-64.

    Google Scholar 

  3. C. A. Squier and R. M. Hopps. A study of the permeability barrier in epidermis and oral epithelium using horseradish peroxidase as a tracer in vitro. Br. J. Dermat. 95:123-129 (1976).

    Google Scholar 

  4. C. A. Squier and B. K. Hall. The permeability of mammalian non-keratinized oral epithelia to horseraddish peroxidase applied in vivoand in vitro. Arch. Oral Biol. 29:45-50 (1984).

    PubMed  Google Scholar 

  5. M. C. Alfano, A. J. Chasens, and C. W. Masi. Autoradiographic study of the penetration of radiolabelled dextrans and inulin through non-keratinized oral mucosa in vitro. J. Periodont. Res. 12:368-377 (1977).

    PubMed  Google Scholar 

  6. M. E. Dowty, K. E. Knuth, B. K. Irons, and J. R. Robinson. Transport of thyrotropin releasing hormone in rabbit buccal mucosa in vitro. Pharm. Res. 9:1113-1122 (1992).

    PubMed  Google Scholar 

  7. S. Senel, A. J. Hoogstraate, F. Spies, J. C. Verhoef, H. E. Junginger, and H. E. Bodde. Visualization of enhancing effects of bile salts on buccal penetration. Eur. J. Morph. 31:35-41 (1993).

    Google Scholar 

  8. C. A. Lesch, C. A. Squier, A. Cruchley, D. M. Williams, and P. Speight. The permeability of human oral mucosa and skin to water. J. Dent. Res. 68:1345-1349 (1989).

    PubMed  Google Scholar 

  9. E. Quadros, J. Cassidy, K. Gniecko, and S. LeRoy. Buccal and colonic absorption of CGS 16617, a novel ACE inhibitor. J. Control. Rel. 19:77-86 (1991).

    Google Scholar 

  10. C. A. Squier and B. K. Hall. The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier. J. Invest. Dermat. 84:(1985).

  11. A. J. Hoogstraate, C. Cullander, J. F. Nagelkerke, J. Verhoel, H. E. Junginger, and H. E. Bodde. Diffusion rates and transport pathways of FITC-labelled model compounds through buccal epithelium. Proceed. Int. Symp. Control. Rel. Bioact. Mater. 20:234-235 (1993).

    Google Scholar 

  12. A. J. Hoogstraate, S. Senel, C. Cullander, J. Verhoef, H. E. Junginger, and H. E. Bodde. Effects of bile salts on transport rates and routes of FTIC-labelled compounds across porcine buccal epithelium in vitro. J. Control. Rel. 40:211-221 (1996).

    Google Scholar 

  13. A. J. Hoogstraate, H. E. Bodde, C. Cullander, and H. E. Junginger. Diffusion rates and transport pathways of FITC-labelled model compounds through buccal epithelium. Pharm. Res. 9:S-188 (1992).

    Google Scholar 

  14. A. J. Hoogstraate, J. C. Verhoef, B. Tuk, A. Pijpers, L. A. M. G. van Leengoed, J. H. M. Vheijden, H. E. Junjinger, and H. E. Bodde. Buccal delivery of fluorescein isothiocyanate-dextran 4400 and the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. J. Control. Rel. 4:77-84 (1996).

    Google Scholar 

  15. A. H. Beckett and A. C. Moffat. Correlation of partition coefficients in n-heptane-aqueous systems with buccal absorption data for a series of amines and acids. J. Pharm. Pharmacol. 21:144S-150S (1969).

    PubMed  Google Scholar 

  16. P. P. H. Le Brun, P. L. A. Fox, M. E. de Vries, and H. E. Bodde. In vitropenetration of some β-adrenoreceptor blocking drugs through porcine buccal mucosa. Int. J. Pharm. 49:141-145 (1989).

    Google Scholar 

  17. K. W. Garren and A. J. Repta. Buccal drug absorption. II. In Vitrodiffusion across the hamster cheek pouch. J. Pharm. Sci. 78:160-164 (1989).

    PubMed  Google Scholar 

  18. A. H. Beckett and A. C. Moffat. Kinetics of buccal absorption of some carboxylic acids and the correlation of the rate constants and n-heptane:aqueous phase partition coefficients. J. Pharm. Pharmacol. 22:15-19 (1970).

    PubMed  Google Scholar 

  19. I. A. Siegel, K. T. Izutsu, and E. Watson. Mechanisms of nonelectrolyte penetration across dog and rabbit oral mucosa in vitro. Arch. Oral Biol. 26:357-361 (1981).

    PubMed  Google Scholar 

  20. A. Martin, P. Bustamante, and A. H. C. Chun. Physical Pharmacy, Lea & Febiger, Malvern, PA. 1993, pp. 362-393.

    Google Scholar 

  21. J. Zhang, J. Streisand, S. Niu, D. Coleman, B. Hague, L. Maland, and T. Stanley. Buccal mucosal absorption of esmolol in an in vivodog model. Pharm. Res. 9:S-177 (1992).

    Google Scholar 

  22. O. Al-Sayed-Omar, A. Johnson, and P. Turner. Influence of pH on the buccal absorption of morphine sulphate and its major metabolite, morphine-3-glucuronide. J. Pharm. Pharmacol. 39:934-935 (1987).

    PubMed  Google Scholar 

  23. A. H. Beckett and E. J. Triggs. Buccal absorption of basic drugs and its application as an in vivomodel of passive drug transfer through lipid membranes. J. Pharm. Pharmacol. 19:31S-41S (1967).

    PubMed  Google Scholar 

  24. A. H. Beckett and A. C. Moffat. The influence of substitution in phenyacetic acids on their performance in the buccal absorption test. J. Pharm. Pharmacol. 21:139S-143S (1969).

    PubMed  Google Scholar 

  25. C. L. Barsuhn, L. S. Olanoff, D. D. Gleason, E. L. Adkins, and N. F. H. Ho. Human buccal absorption of flubriprofen. Clin. Pharmacol. Ther. 44:225-231 (1988).

    PubMed  Google Scholar 

  26. D. Hicks. The buccal absorption of some β-adrenoceptor blocking drugs. Br. J. Pharmacol. 47:680P-681P (1973).

    PubMed  Google Scholar 

  27. A. Kristl, A. Mrhar, and F. Kozjek. The ionisation properties of acyclovir and deoxyacyclovir. Int. J. Pharm. 99:79-82 (1993).

    Google Scholar 

  28. A. Tsuji, E. Miyamoto, N. Hashimoto, and T. Yamana. GI absorption of beta-lactam antibiotics II: Deviation from pH-partition hypothesis in penicillin absorption through in situand in vitrolipoidal barriers. J. Pharm. Sci. 67:1705-1711 (1978).

    PubMed  Google Scholar 

  29. C. A. Squier, P. Cox, and P. W. Wertz. Lipid content and water permeability of skin and oral mucosa. J. Invest. Dermat. 96:123-126 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaei, A.H., Berner, B. & Li, X. Transbuccal Delivery of Acyclovir: I. In Vitro Determination of Routes of Buccal Transport. Pharm Res 15, 1182–1188 (1998). https://doi.org/10.1023/A:1011927521627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011927521627

Navigation