Skip to main content
Log in

On the Rectilinear Non-Collision Motion

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We systematically investigate the rectilinear non-collision motion, i.e., the rectilinear one with C > 0, where C is the angular momentum integral. This kind of motion appears in stellar dynamics when considering encounters of stars. For a short enough segment of a star's path, it is a very good approximation to the real motion of the star. Moreover, we derive also an analogue to Kepler's equation for this motion, and, considering the barycentric orbits of the stars, we find their minimal mutual distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agekjan, T. A. and Ogorodnikov, K. F.: 1974, Solar Neighbourhood as the Local Macroscopic Volume Element within the Galaxy, Highlights in Astronomy Vol. 3, Reidel, Dordrecht, 451.

    Google Scholar 

  • Aitken, R. G.: 1964, The Binary Stars, Dover Publ. Inc., NY (originally published in 1918).

    Google Scholar 

  • Alksnis, A. and Michulis, A.: 1952, ‘On the space motion of three stars from the main sequence’, Astron. Zh. 29(2), 215, (in Russian).

    Google Scholar 

  • Bailey, M. E.: 1983, ‘The structure and evolution of the solar system comet cloud’, Mon. Not. R. Astron. Soc. 204, 603.

    Google Scholar 

  • Danby, J. M. A.: 1987, ‘The solution of Kepler's equation, III’, Celest. Mech. 40, 303.

    Google Scholar 

  • Danby, J. M. A. and Burkardt, T. M.: 1983, ‘The solution of Kepler's equation, II’ Celest. Mech. 31, 95.

    Google Scholar 

  • Feller, W.: 1950, ‘An introduction to probability theory and its applications’, Vol. I, Wiley, NY, p. 120.

    Google Scholar 

  • Garcia-Sanchez, J., Preston, R. A., Jones, D. L., Weissman, P. R., Lestrade, J. F., Latham, D.W. and Stefanik, P. R.: 1999, ‘Stellar encounters with the Oort cloud based on Hipparcos data, Astr. J. 117, 1042.

    Google Scholar 

  • Gliese, W. and Jahreiß, H.: 1991, ‘Preliminary version of the Third Catalogue of Nearby Stars’, Astron. Rechen-Inst., Heidelberg (CNS3).

    Google Scholar 

  • Herrick, S.: 1945, ‘Nearly parabolic and nearly rectilinear orbits’, Astr. J. 51, 123.

    Google Scholar 

  • Jeans, J. H.: 1919, Problems of cosmogony and stellar dynamics, Cambridge Univ. Press, p. 225.

  • Jeans, J. H.: 1928, Astronomy and Cosmogony, Cambridge Univ. Press, p. 317 (now available through Dover Publ. Inc., NY 1961).

  • Landau, L. D.: 1937, ‘The Boltzmann equation for a coulomb interactions’, Zh. eksper. teor. fiziki 7(2), 203, (in Russian).

    Google Scholar 

  • Makover, S. G.: 1964, ‘Perturbations of comets by fixed stars’, Bull. Inst. Teor. Astron. 8, 525 (in Russian).

    Google Scholar 

  • Matthews, R. A. J.: 1994, ‘The close approach of stars in the solar neighbourhood’, Quart. J. Roy Astr. Soc. 35, 1.

    Google Scholar 

  • Müll¨äri, A. A. and Orlov, V. V.: 1996, Encounters of the sun with nearby stars, Earth, Moon, and Planets, 72, 19.

    Google Scholar 

  • Ng, E. W.: 1979, A general algorithm for the solution of Kepler's equation for elliptic orbits, Celest. Mech. 20, 243.

    Google Scholar 

  • Odell, A. W., Gooding, R. H.: 1986, ‘Procedures for solving Kepler's equation’, Celest. Mech. 38, 307.

    Google Scholar 

  • Ogorodnikov, K. F.: 1965, Dynamics of Stellar Systems, Pergamon Press, Oxford, p. 107.

    Google Scholar 

  • Oort, J. H.: 1950, ‘The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its origin’, Bull. Astr. Inst. Neth. 11, 91.

    Google Scholar 

  • Üpik, E. J.: 1932, ‘Note on Stellar perturbations of nearly parabolic orbits’, Proc. Am. Acad. Arts Sci. 67, 169.

    Google Scholar 

  • Revina, I. A.: 1988, Neighbouring Stars in the Future and in the Past and their Effect on Cometary Motion, in: Analysis of Motion of Celestial Bodies and Estimation of Accuracy of their Observations, Latvian University, Riga, 121 (in Russian).

    Google Scholar 

  • Rewers, G.: 1988, A Statistics of Nearby-Stars Passages, MSc Thesis, A. Mickiewicz University, Poznań (in Polish).

    Google Scholar 

  • Rickman, H.: 1976, Stellar perturbations of orbits of long-period comets and their significance for cometary capture, Bull. Astr. Inst. Czech. 27, 92.

    Google Scholar 

  • Schlesinger, F. and Alter, D.: 1910, On the relative motions in 61 Cygni and similar stars, Publ. Allegheny Obs. 2(2), 13.

    Google Scholar 

  • Sekanina, Z.: 1968, ‘On the perturbations of comets by nearby-stars. I. Sphere of action of the solar system’, Bull. Astr. Inst. Czech. 19, 223.

    Google Scholar 

  • Scholl, H., Cazenave, A. and Brahic, A.: 1982, ‘The effect of star passages on cometary orbits in the Oort cloud’, Astr. & Astrophys. 112, 157.

    Google Scholar 

  • Serafin, R. A.: 1998, ‘Bounds on the solution to Kepler's equation, II. Universal and optimal starting points’, Celest. Mech. & Dyn. Astr. 70, 131.

    Google Scholar 

  • Weissman, P. R.: 1980, ‘Stellar perturbations of the cometary cloud’, Nature 288, 242.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serafin, R.A. On the Rectilinear Non-Collision Motion. Celestial Mechanics and Dynamical Astronomy 80, 97–109 (2001). https://doi.org/10.1023/A:1011917929219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011917929219

Navigation