Skip to main content
Log in

Ascorbate and Low Concentrations of FeSO4 Induce the Ca2+-Dependent Pore in Rat Liver Mitochondria

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Oxidative stress is one of the most frequent causes of tissue and cell injury in various pathologies. The molecular mechanism of mitochondrial damage under conditions of oxidative stress induced in vitro with low concentrations of FeSO4 and ascorbate (vitamin C) was studied. FeSO4 (1-4 μM) added to rat liver mitochondria that were incubated in the presence of 2.3 mM ascorbate induced (with a certain delay) a decrease in membrane potential and high-amplitude swelling. It also significantly decreased the ability of mitochondria to accumulate exogenous Ca2+. All the effects of FeSO4 + ascorbate were essentially prevented by cyclosporin A, a specific inhibitor of the mitochondrial Ca2+-dependent pore (also known as the mitochondrial permeability transition). EGTA restored the membrane potential of mitochondria de-energized with FeSO4 + ascorbate. We hypothesize that oxidative stress induced in vitro with FeSO4 and millimolar concentrations of ascorbate damages mitochondria by inducing the cyclosporin A-sensitive Ca2+-dependent pore in the inner mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Papa, S., andSkulachev, V. P. (1997) Mol. Cell. Biochem., 174, 305-319.

    PubMed  Google Scholar 

  • Zoratti, M., andSzabo, I. (1995) Biochim. Biophys. Acta, 1241, 139-176.

    PubMed  Google Scholar 

  • Crompton, M. (1999) Biochem. J., 341, 233-249.

    Article  PubMed  Google Scholar 

  • Petronilli, V.,Costantini, P.,Scorrano, L.,Colonna, R.,Passamonti, S., andBernardi, P. (1994) J. Biol. Chem., 269, 16638-16642.

    PubMed  Google Scholar 

  • Vercesi, A. E.,Kowaltowski, A. J.,Grijalba, M. T.,Meinicke, A. R., andCastilho, R. F. (1997) Biosci. Rep., 17, 43-52.

    PubMed  Google Scholar 

  • Zorov, D. B.,Filburn, C. R.,Klotz, L. O.,Zweier, J. L., andSollott, S. J. (2000) J. Exp. Med., 192, 1001-1014.

    PubMed  Google Scholar 

  • Halliwell, B. (1999) TIBS, 24, 255-259.

    PubMed  Google Scholar 

  • Pauling, L. (1971) JAMA, 216, 332.

    Google Scholar 

  • Pauling, L. (1971) Am. J. Clin. Nutr., 24, 294-299.

    Google Scholar 

  • Pauling, L. (1971) Proc. Natl. Acad. Sci. USA, 68, 2678-2681.

    PubMed  Google Scholar 

  • Bodrova, M. E.,Dedukhova, V. I., andMokhova, E. N. (2000) Biochemistry (Moscow), 65, 477-484.

    Google Scholar 

  • Akerman, K. E. O., andWikstrom, M. K. F. (1976) FEBS Lett., 68, 191-197.

    Article  PubMed  Google Scholar 

  • Vladimirov, Yu. A., andArchakov, A. I. (1972) Lipid Peroxidation in Biological Systems [in Russian], Nauka, Moscow.

    Google Scholar 

  • Pradies, G.,Riggierro, M.,Petrosillo, G., andQuadliariello, E. (1998) FEBS Lett., 424, 155-158.

    PubMed  Google Scholar 

  • Burkitt, M. J., andGilbert, B. C. (1989) Free Radic. Res. Commun., 5, 333-344.

    PubMed  Google Scholar 

  • Szabados, G.,Tretter, L., andHorvath, I. (1989) Free Radic. Res. Commun., 7, 161-170.

    PubMed  Google Scholar 

  • Halliwell, B., andGutteridge, M. C. (1984) Biochem. J., 219, 1-14.

    PubMed  Google Scholar 

  • Kobayashi, Y., andUsui, T. (1982) Biochem. Biophys. Res. Commun., 105, 539-545.

    PubMed  Google Scholar 

  • Broekemeier, K. M., and Pfeiffer, D. R. (1995) Biochemistry, 34, 16440-16449.

    PubMed  Google Scholar 

  • Schluter, T.,Heinz, S., andSchonfeld, P. (2000) FEBS Lett., 481, 42-46.

    PubMed  Google Scholar 

  • Tangeras, A.,Flatmark, T.,Backstrom, D., andEhrenberg, A. (1980) Biochim. Biophys. Acta, 589, 162-175.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brailovskaya, I.V., Starkov, A.A. & Mokhova, E.N. Ascorbate and Low Concentrations of FeSO4 Induce the Ca2+-Dependent Pore in Rat Liver Mitochondria. Biochemistry (Moscow) 66, 909–912 (2001). https://doi.org/10.1023/A:1011913021380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011913021380

Navigation