Skip to main content
Log in

Effect of Pancreatico-Biliary Secretions and GI Transit Time on the Absorption and Pharmacokinetic Profile of Ranitidine in Humans

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Ranitidine plasma concentration vs. time profiles and the extent of ranitidine absorption were examined in the presence and absence of pancreatico-biliary secretions in order to elucidate factors which may contribute to secondary peaks after oral ranitidine administration.

Methods. Ranitidine solution (300 mg) was administered to 4 fasting healthy subjects via an indwelling small-bore oroenteric tube located ∼16 cm distal to the pylorus. On 3 consecutive days, subjects randomly received ranitidine alone (control), ranitidine 10 min after 0.04 μg/kg IV cholecystokinin (CCK) sufficient to cause gall bladder emptying into the duodenum, and ranitidine 30 min after inflation of an occlusive duodenal balloon located ∼10 cm distal to the pylorus to prevent pancreatico-biliary secretions from reaching the dosing port or beyond. Small bowel transit time (SBTT; min) was measured by breath H2. Serial blood samples, obtained over 12 hours in each treatment, were analyzed by HPLC to determine ranitidine AUC0−2(ng*h/mL), as well as Cmax(ng/mL) and Tmax(min) of the first and subsequent peaks, if subsequent peaks were observed.

Results. Ranitidine AUC0−2and Cmax1, were not altered significantly by treatments; treatment effects on SBTT varied. Secondary peaks were observed in subjects #1 and #3 during the control treatment and subjects #2 and #4 during the CCK treatment. No secondary peaks were observed in any subject during the balloon treatment, and Tmax1was delayed.

Conclusions. Results support the hypothesis that pancreatico-biliary secretions (present in the intestinal lumen during control or CCK treatment) and gastrointestinal transit time may influence the occurrence of secondary peaks in ranitidine concentration vs. time profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. J. C. Roberts. Clinical pharmacokinetics of ranitidine. Clin. Pharmacokinet. 9:211-227 (1984).

    PubMed  Google Scholar 

  2. C. Shim and J. Hong. Inter-and intrasubject variations in ranitidine pharmacokinetics after oral administration to normal male subjects. J. Pharm. Sci. 78:990-994 (1989).

    PubMed  Google Scholar 

  3. E. F. Woodings, G. T. Dixon, C. Harrison, P. Carley, and D. A. Richards. Ranitidine-a new H2 receptor antagonist. Gut 21:187-191 (1980).

    PubMed  Google Scholar 

  4. M. L. McFadyen, P. I. Folb, I. N. Marks, J. P. Wright, and W. Lucke. The pharmacokinetics of ranitidine in patients with chronic duodenal ulceration. Scan. J. Gastroenterol. 69(suppl):109-112 (1981).

    Google Scholar 

  5. S. S. Walkenstein, J. W. Dubb, W. C. Randolph, W. J. Westlake, R. M. Stote, and A. P. Intoccia. Bioavailability of cimetidine in man. Gastroenterology 74:360-365 (1979).

    Google Scholar 

  6. H. Kroemer and U. Klotz. Pharmacokinetics of famotidine in man. Intern. J. Clin. Pharmacol. Ther. Toxicol. 25:458-463 (1987).

    Google Scholar 

  7. S. Huang, T. B. Marriott, H. S. Weintraub, J. D. Arnold, J. Boccagno, R. Abels, and W. Harris. Clinical pharmacokinetics of etinidine. Biopharm. Drug Dispos. 9:477-86 (1988).

    PubMed  Google Scholar 

  8. U. Klotz and S. Walker. Biliary excretion of H2-receptor antagonists. Eur. J. Clin. Pharmacol. 39:91-92 (1990).

    PubMed  Google Scholar 

  9. A. B. Suttle and K. L. R. Brouwer. Bile flow but not enterohepatic recirculation influences the pharmacokinetics of ranitidine in the rat. Drug Metab. Dispos. 22:224-232 (1994).

    PubMed  Google Scholar 

  10. A. Graham, C. von Bahr, B. Lindstrom, and A. Rosen. Bioavailability and pharmacokinetics of cimetidine. Eur. J. Clin. Pharmacol. 16:335-340 (1979).

    PubMed  Google Scholar 

  11. Y. F. Hui, J. Kolars, Z. Hu, and D. Fleisher. Intestinal clearance of H2antagonists. Biochem. Pharmacol. 48:229-231 (1994).

    PubMed  Google Scholar 

  12. D. C. Garg, D. J. Weidler, and F. N. Eshelman. Ranitidine bioavailability and kinetics in normal male subjects. Clin. Pharmacol. Ther. 33:445-452 (1983).

    PubMed  Google Scholar 

  13. M. F. Williams, G. E. Dukes, W. Heizer, Y. H. Han, D. J. Hermann, T. Lampin, and L. J. Hak. Influence of gastrointestinal site of drug delivery on the absorption characteristics of ranitidine. Pharm. Res. 9:1190-1194 (1992).

    PubMed  Google Scholar 

  14. T. Gramatte, E. El Desoky, and U. Klotz. Site-dependent small intestinal absorption of ranitidine. Eur. J. Clin. Pharmacol. 46:253-259 (1994).

    PubMed  Google Scholar 

  15. A. B. Suttle and K. L. R. Brouwer. Regional gastrointestinal absorption of ranitidine in the rat. Pharm. Res. 12:1311-1315 (1995).

    PubMed  Google Scholar 

  16. J. C. Bryson, G. E. Dukes, M. G. Kirby, W. D. Heizer, and J. R. Powell. Effect of altering small bowel transit time on sustained release theophylline absorption. J. Clin. Pharmacol. 29:733-738 (1989).

    PubMed  Google Scholar 

  17. H. Korth, I. Muller, J. F. Erckenbrecht, and M. Wienbeck. Breath hydrogen as a test for gastrointestinal transit. Hepato-gastroenterol. 31:282-284 (1984).

    Google Scholar 

  18. J. H. Bond, Jr., and M. D. Levitt. Investigation of small bowel transit time in man utilizing pulmonary hydrogen (H2) measurements. J. Lab. Clin. Med. 85:546-555 (1975).

    PubMed  Google Scholar 

  19. D. Farthing, K. L. R. Brouwer, I. Fakhry, and D. Sica. Solid phase extraction and determination of ranitidine in human plasma by a high performance liquid chromatographic method utilizing midbore chromatography. J. Liq. Chromatgr. Biomed. Appl. 688:350-353 (1997).

    Google Scholar 

  20. W. S. Fuchs, A. von Nieciecki, K. Molz, G. Popescu, A. Weil, M. F. Barkworth, S. Gay, A. Laicher, and F. Stanislaus. Effect of gallbladder contraction induced cholagogia on the pharmacokinetic profile of a sustained-release theophylline formulation. Arzneimittel-Forschung. 46:1120-1126 (1996).

    PubMed  Google Scholar 

  21. S. D. Mithani, V. Bakatselou, C. N. TenHoor, and J. B. Dressman. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13:163-167 (1996).

    PubMed  Google Scholar 

  22. K. Taniguchi, S. Muranishi, and H. Sezaki. Enhanced intestinal permeability to macromolecules. II. Improvement of the large intestinal absorption of heparin by lipid-surfactant mixed micelles in rat. Int. J. Pharm. 4:219-228 (1980).

    Google Scholar 

  23. S. Muranishi, N. Muranushi, and H. Sezaki. Improvement of absolute bioavailability of normally poorly absorbed drugs: inducement of the intestinal absorption of streptomycin and gentamycin by lipid-bile salt mixed micelles in rat and rabbit. Int. J. Pharm. 2:101-111 (1979).

    Google Scholar 

  24. T. Kimura, H. Sezaki and K. Kakemi. Effect of bile salts in the gastrointestinal absorption of drugs. IV: Site of intestinal absorption of sodium taurocholate and its consequence on drug absorption in the rat. Chem. Pharm. Bull 20:165-1662 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, K.S., Song, M.H., Heizer, W.D. et al. Effect of Pancreatico-Biliary Secretions and GI Transit Time on the Absorption and Pharmacokinetic Profile of Ranitidine in Humans. Pharm Res 15, 1281–1285 (1998). https://doi.org/10.1023/A:1011908412058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011908412058

Navigation