Skip to main content
Log in

Potential of Immobilized Artificial Membranes for Predicting Drug Penetration Across the Blood−Brain Barrier

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The present study evaluates immobilized artificial membrane (IAM) chromatography for predicting drug permeability across the blood-brain barrier (BBB) and outlines the potential and limitations of IAMs as a predictive tool by comparison with conventional methods based on octanol/water partitioning and octadecylsilane (ODS)-HPLC.

Methods. IAM- and ODS-HPLC capacity factors were determined in order to derive the hydrophobic indices log kIAMand log kwfor two sets of compounds ranging from very lipid soluble (steroids) to more hydrophilic agents (biogenic amines). The uptake of the compounds across the in vivoBBB expressed as brain uptake index (BUI) has been correlated with these HPLC capacity factors as well as octanol/ water partition (ClogP) and distribution coefficients (log D7.4).

Results. For both test groups log kIAMcorrelates significantly with the respective log BUI of the drug (r2= 0.729 and 0.747, p < 0.05), whereas with log kw, log D7.4and ClogP there is only a correlation for the group of steroids (r2= 0.789, 0.659 and 0.809, p < 0.05) but not for the group of biogenic amines. There is a good correlation between log kIAMand log kw, ClogP or log D7.4for the group of steroids (r2= 0.945, 0.867 and 0.974, p < 0.01) but not for the biogenic amines.

Conclusions. All physico-chemical descriptors examined in this study equally well describe brain uptake of lipophilic compounds, while log kIAMis superior over log D7.4, ClogP and log kwwhen polar and ionizable compounds are included. The predictive value of IAMs combined with the power of HPLC holds thus great promise for the selection process of drug candidates with high brain penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. W. B. Bradbury. The blood-brain barrier. Exp. Physiol. 78:453-472 (1993).

    PubMed  Google Scholar 

  2. V. A. Levin. Relation of octanol/water partition and molecular weight to rat brain capillary permeability J. Med. Chem. 23:682-684 (1980).

    PubMed  Google Scholar 

  3. N. J. Abbott and I. A. Romero. Transporting therapeutics across the blood-brain barrier. Mol. Medicine Today 2:106-113 (1996).

    Google Scholar 

  4. R. A. Conradi, P. S. Burton, and R. T. Borchardt. Physico-chemical and biological factors that influence a drug's cellular permeability by passive diffusion. In V. Pliska. B. Testa and H. van de Waterbeemd (eds.), Lipophilicity in Drug Action and Toxicology, VCH, Weinheim, 1996. pp. 233-251.

    Google Scholar 

  5. C. A. Bailey, P. Bryla, and A. W. Malick. The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Adv. Drug Deliv. Rev. 22:85-100 (1996).

    Google Scholar 

  6. W. M. Pardridge. Transport of small molecules through the blood-brain barrier: biology and methodology. Adv. Drug Deliv. Rev. 15:5-36 (1995).

    Google Scholar 

  7. R. C. Young, R. C. Mitchell, T. H. Brown, C. R. Ganellin, R. Griffith, M. Jones, K. K. Rana, D. Saunders, I. R. Smith, N. E. Sore, and T. J. Wilks. Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. J. Med. Chem. 31, 656-671 (1988).

    PubMed  Google Scholar 

  8. J. G. Dorsey and M. G. Khaledi. Hydrophobicity estimations by reversed-phase liquid chromatography. Implications for biological partitioning processes. J. Chrom. 656:485-499 (1993).

    Google Scholar 

  9. S. Ong. H. Liu, X. Qiu, G. Bhat, and C. Pidgeon. Membrane partition coefficients chromatographically measured using immobilized artificial membrane surfaces. Anal. Chem. 67:755-762 (1995).

    PubMed  Google Scholar 

  10. M. H. Abraham and H. S. Chadha. Applications of a solvation equation to drug transport properties. In V. Pliska, B. Testa and H. van de Waterbeemd (eds.), Lipophilicity in Drug Action and Toxicology, VCH, Weinheim, 1996, pp. 311-337.

    Google Scholar 

  11. A. Seelig, R. Gottschlich, and R. M. Devant. A method to determine the ability of drugs to diffuse through the blood-brain barrier. Proc. Natl. Acad. Sci USA 91:68-72 (1994).

    PubMed  Google Scholar 

  12. S. C. Basak, B. D. Gute, and L. R. Drewes. Predicting blood-brain transport of drugs: a computational approach. Pharm. Res. 13:775-778 (1996).

    PubMed  Google Scholar 

  13. F. M. Alvarez, C. B. Bottom, P. Chikhale, and C. Pidgeon. Immobilized artificial membrane chromatography. Prediction of drug transport across biological barriers. In T. Ngo (ed.), Molecular Interactions in Bioseparation, Plenum Press, New York, 1993, pp. 151-167.

    Google Scholar 

  14. C. Pidgeon, C. Marcus, and F. Alvarez. Immobilized artificial membrane chromatography: surface chemistry and application. In J. W. Kelly and T. O. Baldwin (eds.), Applications of Enzyme Biotechnology, Plenum Press, New York, 1991, pp. 201-220.

    Google Scholar 

  15. C. Y. Yang, S. J. Cai, H. Liu, and C. Pidgeon. Immobilized artificial membranes—screens for drug membrane interactions. Adv. Drug Del. Rev. 23:229-256 (1996).

    Google Scholar 

  16. C. Benistant, M. P. Dehouck, J. C. Fruchart, R. Cechelli, and M. Lagarde. Fatty acid composition of brain endothelial cells: effect of co-culture with astrocytes. J. Lipid Res. 36:2311-2319 (1995).

    PubMed  Google Scholar 

  17. S. E. Wright, J. Courtland White, and L. Huang. Partitioning of tenoposide into membranes and the role of lipid composition. Biochim. Biophys. Acta—Biomembr. 1021:105-113 (1990).

    Google Scholar 

  18. Q. R. Smith. Methods of study. In M. W. B. Bradbury (ed.), Physiology and Pharmacology of the Blood-Brain BarrierSpringer Verlag, Heidelberg, 1992, pp. 23-52.

    Google Scholar 

  19. C. Hansch and A. Leo. Substituent constants for correlation analysis in chemistry and biology.Wiley and Sons, New York. pp. 169-330 (1979).

    Google Scholar 

  20. W. M. Pardridge and L. J. Mietus. Transport of steroid hormones throught the rat blood-brain barrier. J. Clin Invest. 64:145-154 (1979).

    PubMed  Google Scholar 

  21. E. M. Cornford, L. D. Braun, W. H. Oldendorf, and M. A. Hill. Comparison of lipid-mediated blood-brain barrier penetrability in neonates and adults. Cell. Physiol. 12:C161-C168 (1982).

    Google Scholar 

  22. S. D. Kramer and H. Wunderli-Allenspach. The pH-dependence in the partitioning behaviour of (RS)-[3H]-propranolol between MDCK cell lipid vesicles and buffer. Pharm. Res. 13:1851-1855 (1996).

    PubMed  Google Scholar 

  23. R. Kaliszan, A. Nasal, and A. Bucinski. Chromatographic hydrophobicity parameter determined on an immobilized artificial membrane column: relationships to standard measures of hydrophobicity and bioactivity. Eur. J. Med. Chem. 29:163-170 (1994).

    Google Scholar 

  24. M. H. Abraham, H. S. Chadha, R. A. E. Leitao, R. C. Mitchell, W. J. Lambert, R. Kaliszan, A. Nasal, and P. Habor. Determination of solute lipophilicity, as log P(octanol) and log P(alkane) using poly(styrene-divinylbenzene) and immobilized artificial membrane stationary phases in reversed-phase high-performance liquid chromatography. J. Chrom. A 766:35-47 (1997).

    Google Scholar 

  25. A. Reichel, A. Aleshaiker, D. J. Begley, and N. J. Abbott. In vitroscreening for drugs interacting with P-glycoprotein-mediated drug efflux using immortalised rat brain endothelial cells (RBE4). J. Physiol. 491:36P (1996).

    Google Scholar 

  26. A. Reichel, D. J. Begley, and N. J. Abbott. Structural requirements of phenylglycine derivatives for affinity to the L-system transporter at the blood-brain barrier. J. Physiol. 501:30P–31P (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichel, A., Begley, D.J. Potential of Immobilized Artificial Membranes for Predicting Drug Penetration Across the Blood−Brain Barrier. Pharm Res 15, 1270–1274 (1998). https://doi.org/10.1023/A:1011904311149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011904311149

Navigation