Skip to main content
Log in

Computation of particle settling speed and orientation distribution in suspensions of prolate spheroids

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A numerical technique for the dynamical simulation of three-dimensional rigid particles in a Newtonian fluid is presented. The key idea is to satisfy the no-slip boundary condition on the particle surface by a localized force-density distribution in an otherwise force-free suspending fluid. The technique is used to model the sedimentation of prolate spheroids of aspect ratio b/a=5 at Reynolds number 0⋅3. For a periodic lattice of single spheroids, the ideas of Hasimoto are extended to obtain an estimate for the finite-size correction to the sedimentation velocity. For a system of several spheroids in periodic arrangement, a maximum of the settling speed is found at the effective volume fraction φ(b/a)2≈0⋅4, where φ is the solid-volume fraction. The occurence of a maximum of the settling speed is partially explained by the competition of two effects: (i) a change in the orientation distribution of the prolate spheroids whose major axes shift from a mostly horizontal orientation (corresponding to small sedimentation speeds) at small φ to a more uniform orientation at larger φ, and (ii) a monotonic decrease of the the settling speed with increasing solid-volume fraction similar to that predicted by the Richardson–Zaki law ∝(1−φ)5⋅5 for suspensions of spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139 (1967) 261–290.

    Google Scholar 

  2. G. K. Batchelor, Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (1972) 245 pp.

    Google Scholar 

  3. L. Durlofsky, J. F. Brady and G. Bossis, Dynamic simulation of hydrodynamically interacting particles. J. Fluid Mech. 180 (1987) 21–49.

    Google Scholar 

  4. J. F. Brady and G. Bossis, Stokesian dynamics. Ann. Rev. Fluid Mech. 20 (1988) 111–157.

    Google Scholar 

  5. A. J. C. Ladd, Hydrodynamic interactions in a suspension of spherical particles. J. Chem. Phys. 88 (1998) 5051–5063.

    Google Scholar 

  6. A. Sangani and G. Mo, Inclusion of lubrication forces in dynamic simulations. Phys. Fluids 6 (1994) 1653–1662.

    Google Scholar 

  7. T. N. Phung, J. F. Brady, and G. Bossis, Stokesian dynamics simulation of Brownian suspensions. J. Fluid Mech. 313 (1995) 181–207.

    Google Scholar 

  8. Kim, S. and Karrila, J., Microhydrodynamics: Principles and Selected Applications. Boston: Butterworth-Heinemann (1991) 507 pp.

    Google Scholar 

  9. G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London A 102 (1922) 161–179.

    Google Scholar 

  10. H. Lamb, Hydrodynamics, 6th edition. Cambridge/New York: Cambridge University Press/Dover (1932) 738 pp.

    Google Scholar 

  11. E. S. G. Shaqfeh and G. H. Fredrickson, The hydrodynamic stress in a suspension of rods. Phys. Fluids A 2 (1990) 7–24.

    Google Scholar 

  12. B. Herzhaft, E. Guazzelli, M. B. Mackaplow and E. S. G. Shaqfeh, An experimental investigation of the sedimentation of a dilute fiber Suspension. Phys. Rev. Lett. 77 (1996) 290–293.

    Google Scholar 

  13. B. Herzhaft and E. Guazzelli, Experimental study of the sedimenation of dilute and semi-dilute suspensions of fibres. J. Fluid Mech. 384 (1999) 133–158.

    Google Scholar 

  14. M. B. Mackaplow and E. S. G. Shaqfeh, A numerical study of the sedimentation of fibre suspensions. J. Fluid Mech. 376 (1998) 149–182.

    Google Scholar 

  15. I. L. Claeys and J. F. Brady, Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid. J. Fluid Mech. 251 (1993) 411–442.

    Google Scholar 

  16. I. L. Claeys and J. F. Brady, Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous dispersions. J. Fluid Mech. 251 (1993) 443–477.

    Google Scholar 

  17. M. Sugihara-Seki, The motion of an elliptical cylinder in channel flow at low Reynolds numbers. J. Fluid Mech. 257 (1993) 575–596.

    Google Scholar 

  18. J. Feng and D. D. Joseph, The unsteady motion of solid bodies in creeping flows. J. Fluid Mech. 303 (1995) 83–102.

    Google Scholar 

  19. J. Feng, H. H. Hu and D. D. Joseph, Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261 (1994) 95–134.

    Google Scholar 

  20. A. Ladd, Numerical Simulations of particulate suspensions via a discretized Boltzmann equation. Part 1, Theoretical foundation. J. Fluid Mech. 271 (1994) 285–309.

    Google Scholar 

  21. C. K. Aidun, Y. Lu and E.-J. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373 (1998) 287–311.

    Google Scholar 

  22. J. Feng, D. D. Joseph, R. Glowinski and T.W. Pan, A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid. J. Fluid Mech. 283 (1995) 1–16.

    Google Scholar 

  23. K. Höfler and S. Schwarzer, Navier–Stokes simulation with constraint forces: Finite-difference method for particle-laden flows and complex geometries. Phys. Rev. E 61 (2000) 7148–7160.

    Google Scholar 

  24. R. Glowinski, T. W. Pan, T. I. Hesla and D. D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flow. Int. J. Multiphase Flow 25 (1999) 755–794.

    Google Scholar 

  25. G. H. Ristow, Tumbling motion of elliptical particles in viscous two-dimensional fluids. Int. J. Mod. Phys. C 12 (2000) 127–139.

    Google Scholar 

  26. A. L. Fogelson and C. S. Peskin, A fast numerical method for solving the three-dimensional Stokes equations in the presence of suspended particles. J. Comp. Phys. 79 (1988) 50–69.

    Google Scholar 

  27. R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow. Springer Series in Computational Physics. Berlin: Springer (1983) 358 pp.

    Google Scholar 

  28. C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics. New York: Oxford Univeristy Press (1997) 675 pp.

    Google Scholar 

  29. J. W. Perram and M. S. Wertheim, Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function. J. Chem. Phys. 58 (1985) 409–416.

    Google Scholar 

  30. J.W. Perram, J. Rasmussen, E. Præstgaard and J. L. Lebowitz, Ellipsoid contact potential: theory and relation to overlap potentials. Phys. Rev. E 54 (1996) 6565–6572.

    Google Scholar 

  31. P. Y. Huang, H. H. Hu and D. D. Joseph, Direct simulation of the sedimentation of elliptic particles in Oldroyd-B fluids. J. Fluid Mech. 362 (1998) 297–325.

    Google Scholar 

  32. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics. Englewood Cliffs, New Jersey: Prentice Hall (1965) 553pp.

    Google Scholar 

  33. H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (1959) 317–328.

    Google Scholar 

  34. D. L. Koch and E. S. G. Shaqfeh, The instability of a suspension of sedimenting spheroids. J. Fluid Mech. 209 (1989) 521–542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuusela, E., Höfler, K. & Schwarzer, S. Computation of particle settling speed and orientation distribution in suspensions of prolate spheroids. Journal of Engineering Mathematics 41, 221–235 (2001). https://doi.org/10.1023/A:1011900103361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011900103361

Navigation