Skip to main content
Log in

Molecular characterization of the brassinosteroid-deficient lkb mutant in pea

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The brassinosteriod-deficient lkb mutant of garden pea (Pisum sativum L.) is characterized by an erectoides phenotype (reduced internode length, thickened stems, epinastic leaves), which is rescued by application of exogenous brassinolide. We show that the LKB gene is the Arabidopsis DIMINUTO/DWARF-1 (DIM/DWF1) homologue of pea. The DIM/DWF1 homologue from lkb plants contains a mutation that may result in reduced enzyme function, thus resulting in the previously shown accumulation of 24-methylenecholesterol and a deficiency of its hydrogenated product, campesterol. This ultimately leads to a deficiency of the biologically active brassionolide. The mutation in the lkb sequence cosegregates with the lkb phenotype. Northern analyis of the LKB gene revealed that the gene is ubiquitously expressed around the plant and that there is no evidence for negative feedback regulation of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res 25: 3389–3402.

    Google Scholar 

  • Altmann, T. 1999. Molecular physiology of brassinosteroids re-vealed by the analysis of mutants. Planta 208: 1–11.

    Google Scholar 

  • Bach, T.J. and Benveniste, P. 1997. Cloning of cDNAs or genes en-coding enzymes of sterol biosynthesis from plants and other eu-karyotes: heterologous expression and complementation analysis of mutations for functional characterisation. Prog. Lipid Res. 36: 197–226.

    Google Scholar 

  • Bishop, G.J., Harrison, K. and Jones, J.D.G. 1996. The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8: 959–969.

    Google Scholar 

  • Bishop, G.J. and Yokota, T. 2001. Plants steroid hormones, brassi-nosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol. 42: 114–120.

    Google Scholar 

  • Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A. and Feldmann, K.A. 1998. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: 231–243.

    Google Scholar 

  • Choe, S., Noguchi, T., Fujioka, S., Takatsuto, S., Tissier, C.P., Gregory, B.D., Ross, A.S., Tanaka, A., Yoshida, S., Tax, F.E. and Feldmann, K.E. 1999a. The Arabidopsis dwf7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11: 207–221.

    Google Scholar 

  • Choe, S., Dilkes, B.P., Gregory, B.D., Ross, A.S., Yuan, H., Noguchi, T., Fujioka, S., Takatsuto, S., Tanaka, A, Yoshida, S., Tax, F.E. and Feldmann, K.A. 1999b. The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol. 119: 897–907.

    Google Scholar 

  • Clouse, S.D. and Sasse, J.M. 1998. Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 427–451.

    Google Scholar 

  • Ellis, T.H.N. 1994. Approaches to the genetic mapping of pea. In: H.F. Linskens and J.F. Jackson (Eds.) Modern Methods of Plant Analysis, Springer-Verlag, Berlin, pp. 117–160.

  • Ephritikhine, G., Fellner, M., Vannini, C., Lapous, D. and Barbier-Brygoo, H. 1999. The sax1 dwarf mutant in Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberelins and ethylene and is partially rescued by exogenous brassinosteroid. Plant J. 18: 303–314.

    Google Scholar 

  • Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N.B., Worley, J.F., Warthen, J.D. Jr., Steffens, G.L., Flippen-Anderson, J.L. and Cook, J.C. Jr. 1979. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216–217.

    Google Scholar 

  • Jang, J.-C., Fujioka, S., Tasaka M., Seto, H., Takatsuto, S., Ishii, A., Aida, M., Yoshida, S. and Sheen, J. 2000. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev. 14: 1485–1497.

    Google Scholar 

  • Kim, S.-K., Chang, S.C., Lee, E.J., Chung, W.-S., Kim, Y.-S., Hwang, S. and Lee J.S. 2000. Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol. 123: 997–1004.

    Google Scholar 

  • Klahre, U., Noguchi, T., Fujioka, S., Takatsuto, S., Yokota, T., Nomura, T., Yoshida, S. and Chua, N.H. 1998. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 10: 1677–1690.

    Google Scholar 

  • Koka, C.V., Cerny, R.E., Gardner, R.G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S. and Clouse, S.D. 2000. A putative role for the tomato genes DUMPY and CURL-3 in brassiosteroid biosynthesis and response. Plant Phys 122: 95–98.

    Google Scholar 

  • Li, J. and Chory, J. 1997. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929–938.

    Google Scholar 

  • Li, J., Nagpal, P., Vitart, V., McMorris, T.C. and Chory, J. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398–401.

    Google Scholar 

  • Mathur, J., Molnar, G., Fujioka, S., Takatsuto, S., Sakurai, A., Yokota, T., Adam, G., Voigt, B., Nagy, F., Maas, C., Schell, J., Koncz, C. and Szekeres, M. 1998. Transcription of the Arabidop-sis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J. 14: 593–602.

    Google Scholar 

  • Michael, A.J., Hofer, J.M. and Ellis, T.H.N. 1996. Isolation by PCR of a cDNA clone from pea petals with similarity to petunia and wheat zinc finger proteins. Plant Mol. Biol. 30: 1051–1058.

    Google Scholar 

  • Müssig, C. and Altmann, T. 1999. Physiology and molecular mode of action of brassinosteroids. Plant Physiol. Biochem. 37: 363–372.

    Google Scholar 

  • Nomura, T., Nakayama, M., Reid, J.B., Takeuchi, Y. and Yokota, T. 1997. Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol. 113: 31–37.

    Google Scholar 

  • Nomura, T., Kitasaka, Y., Takasuto, S., Reid, J.B., Fukami, M. and Yokota, T. 1999. Brassinosteroid/sterol synthesis and plant.498 growth as affected by lka and lkb mutations of pea. Plant Physiol. 119: 1517–1526.

    Google Scholar 

  • Reid, J.B. 1986. Internode length in Pisum. Three further loci, lh, ls and lk. Ann. Bot. 57: 577–582.

    Google Scholar 

  • Reid, J.B. and Potts, W.C. 1986. Internode length in Pisum.Two further mutants, lh and ls, with reduced gibberellin synthesis and a gibberellin insensitive mutant, lk. Physiol. Plant. 66: 417–426.

    Google Scholar 

  • Reid, J.B. and Ross, J.J. 1989. Internode length in Pisum.Twofur-ther gibberellin insensitivity mutants, lka and lkb. Physiol. Plant. 75: 81–88.

    Google Scholar 

  • Sakurai, A. 1999. Brassinosteroid biosynthesis. Plant Physiol. Biochem. 37: 351–361.

    Google Scholar 

  • Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J. and Jürgens, G. 2000. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev. 14: 1471–1484.

    Google Scholar 

  • Shimizu, S. and Mori, H. 1996. A cDNA from Pisum sativum encoding the DIMINUTO homologue (Accession No. D86494) (PGR96-079). Plant Physiol. 112: 862.

    Google Scholar 

  • Szekeres, M., Nemeth, K., Koncz-Kalman, A., Mathur, J., Kauschmann, A., Altman, T., Redei, G.P., Nagy, F., Schell, J. and Koncz, C. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171–182.

    Google Scholar 

  • Takahashi, T., Gasch, A., Nishizawa, N. and Chua, N.H. 1995. the DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Devel. 9: 97–107.

    Google Scholar 

  • Verwoerd, T.C., Dekker, B.M. and Hoekema, A. 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucl. Acids Res. 17: 2362.

    Google Scholar 

  • Weaver, R.F., and Hedrick, P.W. 1992. Genetics. Wm. C. Brown Publishers, Dubuque, USA.

    Google Scholar 

  • Yokota, T. 1997. The structure, biosynthesis and function of brassi-nosteroids. Trends Plant Sci. 2: 137–143.

    Google Scholar 

  • Yokota, T., Nomura, T., Kitasaka, Y., Takatsuto, S. and Reid, J.B. 1997. Biosynthetic lesions in brassinosteroid-deficient pea mutants. Proc. Plant Growth Regul. Soc. USA 24: 99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, L., Kerckhoffs, L.H.J., Klahre, U. et al. Molecular characterization of the brassinosteroid-deficient lkb mutant in pea. Plant Mol Biol 47, 491–498 (2001). https://doi.org/10.1023/A:1011894812794

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011894812794

Navigation