Skip to main content
Log in

Milyeringa Veritas (Eleotridae), a remarkably versatile Cave Fish from the Arid Tropics of Northwestern Australia

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The blind cave gudgeon Milyeringa veritas is restricted to groundwaters of Cape Range and Barrow Island, northwestern Australia. It occurs in freshwater caves and in seawater in anchialine systems. It is associated with the only other stygobitic cave vertebrate in Australia, the blind cave eel, Ophisternon candidum, the world's longest cave fish, and a diverse stygofauna comprising lineages with ‘tethyan’ tracks and widely disjunct distributions, often from North Atlantic caves. The cave gudgeon inhabits a karst wetland developed in Miocene limestones in an arid area. There is an almost complete lack of information on the basic biology of this cave fish, despite it being listed as threatened under the Western Australian Wildlife Conservation Act. Allozyme frequencies and distributions indicate significant population sub-structuring on the Cape Range peninsula such that the populations are essentially isolated genetically suggesting that more than one biological species is present. Further, they suggest that the vicariant events may have been associated with a series of eustatic low sealevels. Analysis of intestinal contents indicates that they are opportunistic feeders, preying on stygofauna and accidentals trapped in the water, at least at the sites sampled which were open to the surface, a conclusion supported by the results of stable isotope ratio analysis. The gudgeons are found in freshwater caves and throughout deep anchialine systems in which they occur in vertically stratified water columns in which there is a polymodal distribution of water chemistries (temperature, pH, salinity, dissolved oxygen, redox, dissolved inorganic nitrogen series, hydrogen sulphide).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. & W.F. Humphreys. 1993. Patterns of genetic diversity within selected subterranean fauna of the Cape Range peninsula, Western Australia: systematic and biogeographic implications. Rec. West. Austr. Mus. (Suppl.) 45: 145–164.

    Google Scholar 

  • Allen, A.D. 1993. Outline of the geology and hydrogeology of Cape Range, Carnarvon Basin, Western Australia. Rec. West. Austr. Mus. (Suppl.) 45: 25–38.

    Google Scholar 

  • Allen, G.R. 1989. Freshwater fishes of Australia. T.F.H. Publications Inc., Neptune City. 240 pp.

    Google Scholar 

  • ANCA. 1996. A directory of important wetlands in Australia, 2nd edn. Australian Nature Conservation Agency, Canberra. 478 pp.

    Google Scholar 

  • Beard, J.S. 1975. Pilbara: vegetation survey ofWestern Australia 1: 1 000 000 vegetation series. Explanatory notes to sheet 5, the vegetation of the Pilbara area. University of Western Australia Press, Perth. 120 pp.

    Google Scholar 

  • Beard, J.S. 1998. Position and development history of the central watershed of the Western Shield, Western Australia. J. Roy. Soc. West. Austr. 81: 157–164.

    Google Scholar 

  • Bergstrom, D.E. 1997. The phylogeny and historical biogeography of Missouri's Amblyopsis rosae (Ozark cavefish) and Typhlichthys subterraneus (southern cavefish). M.Sc. Thesis, University of Missouri–Columbia, Columbia. 62 pp.

    Google Scholar 

  • Boulton, A.J. 2000. The subsurface macrofauna. pp. 337–361. In: J. Jones & P. Mulholland (eds), Streams and Ground Waters, Academic Press, New York.

    Google Scholar 

  • Chappell, J. & B.G. Thom. 1977. Sea levels and coasts. pp. 275–291. In: J. Allen, J. Golson & R. Jones (ed.) Sunda and Sakul: Prehistoric Studies in Southeast Asia, Melanesia & Australia, Academic Press, London.

    Google Scholar 

  • Christiansen, K. 1962. Proposition for the classification of cave animals. Spelunca 2: 76–78.

    Google Scholar 

  • Cohen, D.M. & J.E. McCosker. 1998. A new species of bythitid fish, genus Lucifuga, from the Gal´apagos Islands. Bull. Mar. Sci. 63: 179–187.

    Google Scholar 

  • Cummins, K.W. & J.C. Wuycheck. 1971. Caloric equivalents for investigations in ecological energetics. Mitt. internat. Verein. Limnol. 18: 1–158.

    Google Scholar 

  • Danielopol, D.L., A. Baltan´as & W.F. Humphreys. 2000. Danielopolina kornickeri sp. n. (Ostracoda: Thaumatocypridoidea) from a western Australian anchialine cave – morphology and evolution. Zool. Scripta 29: 1–16.

    Google Scholar 

  • Díaz Perez, P.A., A.M. Lima & E.G. Machado. 1987a. Morphologia externa de ejemplares machos de Lucifuga simile Nalbant, 1981 (Ophidiiformes, Bythitidae). Revista Biol. (Havana) 1: 77–84.

    Google Scholar 

  • Díaz Perez, P.A., E. Nieto Misas & G. Abio Virsida. 1987b. Peces ciegos del genero Lucifuga (Ophidiiformes: Bythitidae) en dos casimbas cubanas. Rev. Invest. Mar. 8: 41–47.

    Google Scholar 

  • Ford, D.C. & P.W. Williams. 1989. Karst geomorphology and hydrology. Unwin Hyman, London. 601 pp.

    Google Scholar 

  • Gentilli, J. 1972. Australian climatic patterns. Nelson, Melbourne. 285 pp.

    Google Scholar 

  • Gentilli, J. 1979. Epitropical westerly jet advective storms. Q. Geogr. J. 5: 1–20.

    Google Scholar 

  • Harvey, M.S. & W.F. Humphreys. 1995. Notes on the genus Draculoides Harvey (Schizomida: Hubbardiidae), with the description of a newtroglobitic species. Rec.West. Austr. Mus. (Suppl.) 52: 183–189.

    Google Scholar 

  • Hays, J.D., J. Imbrie & N.J. Shackleton. 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194: 1121–1132.

    Google Scholar 

  • Humphreys, W.F. 1993a. Stygofauna in semi-arid tropical Western Australia: a Tethyan connection? Mém. Biospéol. 20: 111–116.

    Google Scholar 

  • Humphreys, W.F. 1993b. The significance of the subterranean fauna in biogeographical reconstruction: examples from Cape Range peninsula, Western Australia. Rec. West. Austr. Mus. (Suppl.) 45: 165–192.

    Google Scholar 

  • Humphreys, W.F. 1999a. Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. pp. 219–227. In: W. Ponder & D. Lunney (ed.) The Other 99%, The Conservation and Biodiversity of Invertebrates, Transactions of the Royal Zoological Society of New South Wales, Mosman.

    Google Scholar 

  • Humphreys, W.F. 1999b. Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-western Australia. J. Roy. Soc. West. Austr. 82: 89–98.

    Google Scholar 

  • Humphreys, W.F. 1999c. The distribution of the Australian cave fishes. Rec. West. Austr. Mus. 19: 469–472.

    Google Scholar 

  • Humphreys, W.F. 2000a. The hypogean fauna of the Cape Range peninsula and Barrow Island, north-west Australia. pp. 581–601. In: H. Wilkens, D.C. Culver & W.F. Humphreys (ed.) Ecosystems of the World, Vol. 30, Subterranean Ecosystems, Elsevier, Amsterdam.

    Google Scholar 

  • Humphreys, W.F. 2000b. Karst wetlands biodiversity and continuity through major climatic change – an example from arid tropical Western Australia. pp. 227–258. In: B. Gopal, W.J. Junk & J.A. Davis (ed.) Biodiversity in Wetlands: Assessment, Function and Conservation,Vol. 1, Backhuys Publishers, Leiden.

    Google Scholar 

  • Humphreys, W.F. 2000c. Background and glossary. pp. 3–14. In: H. Wilkens, D.C. Culver & W.F. Humphreys (ed.) Ecosystems of theWorld,Vol. 30, Subterranean Ecosystems, Elsevier, Amsterdam.

    Google Scholar 

  • Humphreys, W.F. & M. Adams. 1991. The subterranean aquatic fauna of the North West Cape peninsula, Western Australia. Rec. West. Austr. Mus. 15: 383–411.

    Google Scholar 

  • Humphreys, W.F., M. Adams & B. Vine. 1989. The biology of Schizomus vinei (Chelicerata: Schizomida) in the caves of Cape Range, Western Australia. J. Zool. Lond. 217: 177–201.

    Google Scholar 

  • Humphreys, W.F. & M.N. Feinberg. 1995. Food of the blind cave fishes of northwestern Australia. Rec. West. Austr. Mus. 17: 29–33.

    Google Scholar 

  • Humphreys, W.F., A. Poole, S.M. Eberhard & D. Warren. 1999. Effects of research diving on the physico-chemical profile of Bundera Sinkhole, an anchialine remiped habitat at Cape Range, Western Australia. J. Roy. Soc. West. Austr. 82: 99–108.

    Google Scholar 

  • Iliffe, T.M. 2000. Anchialine cave ecology. pp 59–76. In: H. Wilkens, D.C. Culver & W.F. Humphreys (ed.) Ecosystems of the World, Vol. 30, Subterranean Ecosystems, Elsevier, Amsterdam.

    Google Scholar 

  • Jaume, D., G.A. Boxshall & W.F. Humphreys. 2001. New stygobiont copepods (Calanoida, Misophrioida) from Bundera Sinkhole, an anchialine cenote on north-western Australia. Zool. J. Linn. Soc., Lond. (in press).

  • Jaume, D. & W.F. Humphreys. 2001. A new genus of epacteriscid calanoid copepod from an anchialine sinkhole in northwestern Australia. J. Crust. Biol. 21: 157–169.

    Google Scholar 

  • Keighery, G. & N. Gibson. 1993. Biogeography and composition of the flora of the Cape Range peninsula, Western Australia. Rec. West. Austr. Mus (Suppl.) 45: 51–85.

    Google Scholar 

  • Knott, B. 1993. Stygofauna from Cape Range peninsula,Western Australia: tethyan relicts. Rec. West. Austr. Mus. (Suppl.) 45: 109–127.

    Google Scholar 

  • Kuhajda, B.R. & R.L. Mayden. 2001. Status of the federally endangered Alabama cavefish, Speoplatyrhinus poulsoni (Amblyopsidae), in Key Cave and the surrounding caves, Alabama. Env. Biol. Fish. 62: 215–222 (this volume).

    Google Scholar 

  • Levins, R. 1969. Evolution in changing environments. Princeton University Press, Princeton. 120 pp.

    Google Scholar 

  • Martin, M.W. 1990. Exmouth town water supply investigation report and recommendations for future work. Hydrogeology Report No. 1990/36, Western Australian Geological Survey, Perth. 11 pp.

    Google Scholar 

  • McNamara, K.J. (ed.), 1990. Evolutionary Trends. Belhaven Press, London. 368 pp.

    Google Scholar 

  • McNamara, K.J. & G.W. Kendrick. 1994. Cenozoic molluscs and echinoids of Barrow Island,Western Australia. Rec.West. Austr. Mus. (Suppl.) 51: 1–50.

    Google Scholar 

  • Mees, G.F. 1962. The subterranean fauna of Yardie Creek station, NorthWest Cape,Western Australia. J. Roy. Soc.West. Austr. 45: 24–32.

    Google Scholar 

  • Michaelis, F.B. 1985. Threatened fish. A report on the threatened fish of inland water of Australia. Australian National Parks and Wildlife Service, Report Series (3): 1–45.

    Google Scholar 

  • Morse, K. 1993.Whocan see the sea? Prehistoric aboriginal occupation of the Cape Range peninsula. Rec. West. Austr. Mus. (Suppl.) 45: 227–242.

    Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York. 512 pp.

    Google Scholar 

  • Nelson, J.S. 1984. Fishes of the World, 2nd edn. Wiley-Interscience, New York. 532 pp.

    Google Scholar 

  • Nevo. E. 1978. Genetic variation in natural populations: patterns and theory. Theor. Pop. Biol. 13: 121–177.

    Google Scholar 

  • Nevo, E., A. Beiles & R. Ben-Sholmo. 1984. The evolutionary significance of genetic diversity: ecological, demographic, and life history correlates. pp. 13–213. In:G.S. Mani (ed.) Lecture Notes in Biomathematics, Vol. 53, Springer-Verlag, Berlin.

    Google Scholar 

  • Palmer, J. 1985. The blue holes of the Bahamas. Jonathon Cape, London. 185 pp.

    Google Scholar 

  • Pesce, G.L., P. De Laurentiis & W.F. Humphreys. 1996. Copepods from ground waters of Western Australia, Part I, The genera Metacyclops, Mesocyclops, Microcyclops and Apocyclops (Crustacea Copepoda: Cyclopidae). Rec.West. Austr. Mus. 18: 67–76.

    Google Scholar 

  • Planes, S. 1998. Genetic diversity and dispersal capabilities in marine fish. Evol. Biol. 30: 253–298.

    Google Scholar 

  • Poore, G.C.B. & W.F. Humphreys. 1992. First record of Thermosbaenacea (Crustacea) from the Southern Hemisphere: a new species from a cave in tropical Western Australia. Invert. Taxon. 6: 719–725.

    Google Scholar 

  • Poulson, T.L. 1964 Animals in aquatic environments: animals in caves. pp. 749–771. In: D.B. Dull (ed.) Handbook of Physiology, American Physiological Society, Washington.

    Google Scholar 

  • Romero, A. & P.B.S. Vanselow. 2000a. Threatened fishes of the world: Milyeringa veritas Whitley, 1945 (Eleotridae). Env. Biol. Fish. 57: 36.

    Google Scholar 

  • Romero, A. & P.B.S. Vanselow. 2000b. Threatened fishes of the world: Ophisternon candidum (Mees) (Synbranchidae). Env. Biol. Fish. 58: 214.

    Google Scholar 

  • Sbordoni, V., A. Caccone, G. Allegrucci & D. Cesaroni. 1990. Molecular island biogeography. Atti Convegn. Lincei 85: 55–83.

    Google Scholar 

  • Sket, B. 1981. Fauna of anchialine (coastal) cave waters, its origin and importance. pp. 646–647. In: B.F. Beck (ed.) Proceedings of the Eighth International Congress of Speleology, Bowling Green, Kentucky, Vol. 6, National Speleological Society, Huntsville.

    Google Scholar 

  • Sket, B. 1986. Ecology of the mixohaline hypogean fauna along the Yugoslav coast. Stygologia 2: 317–338.

    Google Scholar 

  • Sket, B. 1996. The ecology of anchihaline caves. Trends Ecol. Evol. 11: 221–255.

    Google Scholar 

  • Slack-Smith, S.M. 1993. The non-marine molluscs of the Cape Range peninsula, Western Australia. Rec. West. Austr. Mus. (Suppl.) 45: 87–107.

    Google Scholar 

  • Slatkin, M. 1981. Estimating level of gene flow in natural populations. Genetics 99: 323–335.

    Google Scholar 

  • Slatkin, M. & N.H. Barton. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.

    Google Scholar 

  • Soulé, M. 1976. Allozyme variation: its determinants in space and time. pp. 60–77. In: F.J. Ayala (ed.) Molecular Evolution, Sinauer Associates, Sunderland.

    Google Scholar 

  • Stock, J.H., T.M. Iliffe & D. Williams. 1986. The concept ‘anchialine’ reconsidered. Stygologia 2: 90–92.

    Google Scholar 

  • Thinès, G. & G. Proudlove. 1986. Pisces. pp. 709–733. In: L. Botosaneanu (ed.) Stygofauna Mundi, A Faunistic, Distributional, and Ecological Synthesis of theWorld Fauna Inhabiting Subterranean Waters, E.J. Brill/Dr. W. Backhuys, Leiden.

    Google Scholar 

  • Trexler, J.C. 1988. Hierarchical organization of genetic variation in the sailfish molly, Poecilia latipinna (Pisces: Poeciliidae). Evolution 42: 1006–1017.

    Google Scholar 

  • Van Valen, L. 1965. Morphological variation and width of ecological niche. Amer. Nat. 94: 377–390.

    Google Scholar 

  • Weber, A., G.S. Proudlove & T.T. Nalbant. 1998a. Pisces (Teleostei). A. Morphology, systematic diversity, distribution, and ecology of stygobitic fishes. pp. 1179–1190. In: C. Juberthie & V. Decu (ed.) Encyclopaedia Biospeologica II, Sociétée de Biospéologie, Moulis & Academie Roumaine, Bucarest.

    Google Scholar 

  • Weber, A., G. S. Proudlove, J. Parzefall, H. Wilkens & T.T. Nalbant. 1998b. Pisces (Teleostei). pp. 1177–1213. In: C. Juberthie & V. Decu (ed.) Encyclopaedia Biospeologica II, Sociétée de Biospéologie, Moulis & Academie Roumaine, Bucarest.

    Google Scholar 

  • Whitley, G.P. 1945. New sharks and fishes from Western Australia, Part 2. Austr. Zool. 11: 35–37.

    Google Scholar 

  • Wilkens, H. 1988. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Piscesae, Pisces): support for the neutral mutation theory. Evol. Biol. 23: 271–367.

    Google Scholar 

  • Wilkens, H., U. Strecker & J. Yager. 1989. Eye reduction and phylogenetic age in ophidiform cave fish. Z. zool. Syst. Evolut.-forsch. 27: 126–134.

    Google Scholar 

  • Wright. S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.

    Google Scholar 

  • Wyrwoll, K.H., G.W. Kendrick & J.A. Long. 1993. The geomorphology and Late Cenozoic geological evolution of the Cape Range–Exmouth Gulf region. Rec. West. Austr. Mus. (Suppl.) 45: 1–23.

    Google Scholar 

  • Yager, J. 1981. Remipedia, a newclass of Crustacea from a marine cave in the Bahamas. J. Crust. Biol. 1: 328–333.

    Google Scholar 

  • Yager, J. & W.F. Humphreys. 1996. Lasionectes exleyi sp. nov., the first remipede crustacean recorded from Australia and the Indian Ocean, with a key to the world species. Invert. Taxon. 10: 171–187.

    Google Scholar 

  • Young, M. 1986. Bringing the blind gudgeon into captivity. Fish. Sahul 4: 145–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, W.F. Milyeringa Veritas (Eleotridae), a remarkably versatile Cave Fish from the Arid Tropics of Northwestern Australia. Environmental Biology of Fishes 62, 297–313 (2001). https://doi.org/10.1023/A:1011880726946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011880726946

Navigation