Skip to main content
Log in

The gene family coding for the light-harvesting polypeptides of Photosystem I of the red alga Galdieria sulphuraria*

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Recently [Marquardt et al. (2000) Gene 255: 257–265], we isolated a gene encoding a polypeptide of the light-harvesting complex of Photosystem I (LHC I) of the red alga Galdieria sulphuraria. By screening a G. sulphuraria cDNA library with a DNA probe coding for the conserved first transmembrane helix of this protein we isolated four additional genes coding for LHC I polypeptides. The deduced preproteins had calculated molecular masses of 24.6–25.6 kDa and isoelectric points of 8.09–9.82. N-terminal sequencing of a LHC I polypeptide isolated by gel electrophoresis allowed us to determine the cleavage site of the transit peptide of one of the deduced polypeptides. The mature protein has a calculated molecular mass of 20.6 kDa and an isoelectric point of 7.76. The genes were amplified from nuclear G. sulphuraria DNA by polymerase chain reaction (PCR) using oligonucleotides annealing in the regions of the start and stop codons as primers. All genomic sequences were 80–300 base pairs longer than the PCR products obtained from the respective cDNA clones, pointing to the existence of 1–5 introns per gene. The G. sulphuraria genes form a homogeneous gene family with overall pairwise amino acid identities of 46.0–56.6%. Homology to two diatom, one cryptophytic and two higher plant light-harvesting polypeptides was lower with pairwise identities of 21.1–34.1%. Only one diatom polypeptide showed a higher degree of identity of up to −39.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol 32: 270–277

    Article  PubMed  CAS  Google Scholar 

  • Apt KE, Clendennen SK, Powers DA and Grossman AR (1995) The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol Gen Genet 246: 455–464

    Article  PubMed  CAS  Google Scholar 

  • Bathke L, Rhiel E, Krumbein WE and Marquardt J (1999) Biochemical and immunochemical investigations on the light-harvesting system of the cryptophyte Rhodomonas sp.: Evidence for a Photosystem I specific antenna. Plant Biol 1: 516–523

    CAS  Google Scholar 

  • Bergantino E, Dainese P, Cerovic Z, Sechi S and Bassi R (1995) A post-translational modification of the Photosystem II subunit CP29 protects maize from cold stress. J Biol Chem 270: 8474–81

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya D and Medlin L (1995) The phylogeny of plastids: A review based on comparison of small-subunit ribosomal RNA coding regions. J Phycol 31: 489–498

    CAS  Google Scholar 

  • Bhaya D and Grossman AR (1993) Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Res 21: 4458–4466

    PubMed  CAS  Google Scholar 

  • Deane JA, Fraunholz M, Su V, Maier U-G, Martin W, Durnford DG and McFadden GI (2000) Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes. Protist 151: 239–252

    Article  PubMed  CAS  Google Scholar 

  • De Martino A, Douady D, Quinet-Szely M, Rousseau B, Crépineau F, Apt K and Caron L (2000) The light-harvesting antenna of brown algae. Highly homologous proteins encoded by a multigene family. Eur J Biochem 267: 5540–5549

    Article  PubMed  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H and von Heijne G (1999)ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8: 978–984

    Article  PubMed  CAS  Google Scholar 

  • Eppard M and Rhiel E (1998) The genes encoding light-harvesting subunits of Cyclotella cryptica (Bacillariophyceae) constitute a complex and heterogeneous family. Mol Gen Genet 260: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Eppard M, Krumbein WE, von Haeseler A and Rhiel E (2000) Characterization of fcp4 and fcp12, two additional genes encoding light harvesting proteins of Cyclotella cryptica (Bacillariophyceae) and phylogenetic analysis of this complex gene family. Plant Biol 2: 283–289

    Article  CAS  Google Scholar 

  • Funk C and Vermaas W(1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397–9404

    Article  PubMed  CAS  Google Scholar 

  • Gavel Y and von Heijne G (1990) A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett 261: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Green BR and Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39: 149–162

    Article  CAS  Google Scholar 

  • Heddad M and Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/bbinding gene family. Proc Natl Acad Sci USA 97: 3741–3746

    Article  PubMed  CAS  Google Scholar 

  • Jansson S, Pichersky E, Bassi R, Green BR, Ikeuchi M, Melis A, Simpson DJ, Spangford M, Staehelin LA and Thornber JP (1992) A nomenclature for the genes encoding the chlorophyll a/b-binding proteins of higher plants. Plant Mol Biol Rep 10: 242–253

    CAS  Google Scholar 

  • Jansson S, Green B, Grossman AR and Hiller R (1999) A proposal for extending the nomenclature of light-harvesting proteins of the three transmembrane helix type. Plant Mol Biol Rep 17: 221–224

    Article  CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140: 315–322

    CAS  Google Scholar 

  • Marquardt J and Rhiel E (1997) The membrane-intrinsic lightharvesting complex of the red alga Galdieria sulphuraria (formerly Cyanidium caldarium). Biochemical and immunochemical characterization. Biochim Biophys Acta 1320: 153–164

    Article  CAS  Google Scholar 

  • Marquardt J, Wans S, Rhiel E, Randolf A and Krumbein WE (2000) Intron-exon structure and gene copy number of a gene encoding for a membrane intrinsic light-harvesting polypeptide of the red alga Galdieria sulphuraria. Gene 255:257–265

    Article  PubMed  CAS  Google Scholar 

  • Rhiel E, Kunz J and Wehrmeyer W (1989) Immunocytochemical localization of phycoerythrin-545 and of a chlorophyll a/c light harvesting complex in Cryptomonas maculata (Cryptophyceae). Bot Acta 102: 46–53

    CAS  Google Scholar 

  • Rhiel E, Marquardt J, Eppard M, Mörschel E and Krumbein WE (1997) The light harvesting system of the diatom Cyclotella cryptica. Isolation and characterization of the main light harvesting complex and evidence for the existence of minor pigment proteins. Bot Acta 110: 109–117

    CAS  Google Scholar 

  • Tan S, Wolfe GR, Cunningham FX Jr and Gantt E (1995) Decrease of polypeptides in the PS I antenna complex with increasing growth irradiance in the red alga Porphyridium cruentum. Photosynth Res 45: 1–10

    Article  CAS  Google Scholar 

  • Tan S, Cunningham FX Jr and Gantt E (1997a) LhcaR1 of the red alga Porphyridium cruentum encodes a polypeptide of the LHC I complex with seven potential chlorophyll a-binding residues that are conserved in most LHCs. Plant Mol Biol 33: 157–167

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Ducret A, Aebersold R and Gantt E (1997b) Red algal LHC I genes have similarities with both Chl a/b-and a/c-binding proteins: A 21 kDa polypeptide encoded by LhcaR2 is one of the six LHC I polypeptides. Photosynth Res 53: 129–140

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    PubMed  CAS  Google Scholar 

  • Williams WP and Allen JF (1987) State 1/state 2 changes in higher plants and algae. Photosynth Res 13: 19–45

    Article  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX Jr, Grabowski B and Gantt E (1994) Isolation and characterization of Photosystem I and II from the red alga Porphyridium cruentum. Biochim Biophys Acta 1188: 357–366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquardt, J., Lutz, B., Wans, S. et al. The gene family coding for the light-harvesting polypeptides of Photosystem I of the red alga Galdieria sulphuraria*. Photosynthesis Research 68, 121–130 (2001). https://doi.org/10.1023/A:1011865415369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011865415369

Navigation