Hydrobiologia

, Volume 451, Issue 1–3, pp 69–87 | Cite as

Pelagic coelenterates and eutrophication: a review

  • Mary N. Arai
Article

Abstract

Although eutrophication is a widespread problem in marine waters, its effects are often difficult to separate from normal fluctuations of pelagic coelenterate populations and from other anthropogenic changes due to industrial pollution, construction, introductions, global warming and overfishing. The least complex situations are in small coastal water bodies such as the Caribbean lagoons and Scandinavian fjords. Typically, the diversity of pelagic coelenterates decreases, but the biomass of a small number of species (such as the hydromedusae Aglantha digitale and Rathkea octopunctata and the scyphomedusae Aurelia aurita and Cassiopea spp.) may increase. Adaptations that may allow these species to survive under eutrophic conditions are discussed.

nutrients Hydrozoa Scyphozoa Ctenophora Aurelia Cassiopea oxygen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebischer, N. J., J. C. Coulson & J. M. Colebrook, 1990. Parallel long-term trends across four marine trophic levels and weather. Nature (Lond.) 347: 753–755.Google Scholar
  2. Arai, M. N., 1988. Interactions of fish and pelagic coelenterates. Can. J. Zool. 66: 1913–1927.Google Scholar
  3. Arai, M. N., 1992. Active and passive factors affecting aggregations of hydromedusae: a review. Sci. mar. 56: 99–108.Google Scholar
  4. Arai, M. N., 1997a. Coelenterates in pelagic food webs. In Den Hartog, J. C. (ed.), Proceedings of the 6th International Conference of Coelenterate Biology, 1995. National Natuurhistorisch Museum, Leiden: 1–9.Google Scholar
  5. Arai, M. N., 1997b. A Functional Biology of Scyphozoa. Chapman & Hall, London: 316 pp.Google Scholar
  6. Ates, R. M. L., 1988. Medusivorous fishes, a review. Zool. Med. Leiden 62: 29–42.Google Scholar
  7. Avian, M. & L. Rottini Sandrini, 1994. History of scyphomedusae in the Adriatic Sea. Boll. Soc. Adriat. Sci. Trieste 75: 5–12.Google Scholar
  8. Azov, Y., 1991. EasternMediterranean-a marine desert? Mar. Pollut. Bull. 23: 225–232.Google Scholar
  9. Båmstedt, U., 1990. Trophodynamics of the scyphomedusae Aurelia aurita. Predation rate in relation to abundance, size and type of prey organism. J. Plankton Res. 12: 215–229.Google Scholar
  10. Båmstedt, U., H. Ishii & M. B. Martinussen, 1997. Is the scyphomedusa Cyanea capillata (L.) dependent on gelatinous prey for its early development? Sarsia 82: 269–273.Google Scholar
  11. Bayly, I. A. E., 1986. Ecology of the zooplankton of a meromictic antarctic lagoon with special reference to Drepanopus hispinosus (Copepoda: Calanoida). Hydrobiologia 140: 199–231.Google Scholar
  12. Behrends, G. & G. Schneider, 1995. Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Mar. Ecol. Prog. Ser. 127: 39–45.Google Scholar
  13. Benović, A. & D. LućIć, 1995. Appearance of hydromedusae in the northern Adriatic Sea in 1992 and 1993. Rapp. Comm. Int. Mer. Medit. 34: 203.Google Scholar
  14. Benović, A. & D. LućIć, 1996. Comparison of hydromedusae findings in the northern and southern Adriatic Sea. Sci. mar. 60: 129–135.Google Scholar
  15. Benović, A., D. Justić & A. Bender, 1987. Enigmatic changes in the hydromedusan fauna of the northern Adriatic Sea. Nature (Lond.) 326: 597–600.Google Scholar
  16. Berdnikov, S. V., V. V. Selyutin, V. V. Vasilchenko & J. F. Caddy, 1999. Trophodynamic model of the Black and Azov Sea pelagic ecosystem: consequences of the comb jelly, Mnemiopsis leidyi, invasion. Fish. Res. 42: 261–289.Google Scholar
  17. Beyer, F., 1958. A new, bottom-living trachymedusa from the Oslo Fjord: description of the species, and a general discussion of the life conditions and fauna of the fjord deeps. Nytt Mag. Zool. (Oslo) 6: 121–143.Google Scholar
  18. Beyer, F., 1968. Zooplankton, zoobenthos, and bottom sediments as related to pollution and water exchnage in the Oslofjord. Hellgoländer wiss. Meeresunters 17: 496–509.Google Scholar
  19. Beyer, F. & J. Indrehus, 1995. Effects of pollution and deep water exchange on the fauna along the bottom of Oslofjorden, Norway, based on material collected since 1952. Rep. Norsk Inst. Vannforsk. 621: Vol. 1: 1–143: Vol. 2: 1–153.Google Scholar
  20. Boicourt, W. C., M. Kuzmić & T. S. Hopkins, 1999. The Inland Sea: Circulation of Chesapeake Bay and the Northern Adriatic. Coastal Estuar. Stud. 55: 81–129.Google Scholar
  21. Bologa, A. S., N. Bodeanu, A. Petran, V. Tiganus & Yu. P. Zaitsev, 1995. Major modifications of the Black Sea benthic and planktonic biota in the last three decades. Bull. Inst. Ocean. (Monaco) Special No. 15: 85–110.Google Scholar
  22. Bonsdorff, E., E. M. Blomquist, J. Mattila & A. Norkko, 1997. Coastal eutrophication: Causes, consequences and perspectives in the archipelago areas of the northern Baltic Sea. Estuar. coast. shelf Sci. 44(Suppl. A): 63–72.Google Scholar
  23. Brandon, M. & C. E. Cutress, 1985. A new Dondice (Opisthobranchia: Favorinidae), predator of Cassiopea in southwest Puerto Rico. Bull. mar. Sci. 36: 139–144.Google Scholar
  24. Breitburg, D. L., K. A. Rose & J. H. Cowan, 1999. Linking water quality to larval survival: predation mortality of fish larvae in an oxygen-stratified water column. Mar. Ecol. Prog. Ser. 178: 39–54.Google Scholar
  25. Breitburg, D. L., T. Loher, C. A. Pacey & A. Gerstein, 1997. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr. 67: 489–507.Google Scholar
  26. Brewer, R. H. & J. S. Feingold, 1991. The effect of temperature on the benthic stages of Cyanea (Cnidaria: Scyphozoa), and their seasonal distribution in the Niantic River estuary, Connecticut. J. exp. mar. Biol. Ecol. 152: 49–60.Google Scholar
  27. Brodeur, R. D., C. E. Mills, J. E. Overland, G. E. Walters & J. D. Schumacher, 1999. Evidence for a substantial increase in zooplankton in the Bering Sea, with possible links to climate change. Fish. Oceanogr. 8: 296–306.Google Scholar
  28. Buecher, E., 1997. Distribution and abundance of Pleurobrachia rhodopis (Cydippid Ctenophore) in the Bay of Villefranche-sur-Mer (Northwestern Mediterranean) studied using three different planktonic time series. Ann. Inst. oceanogr. 73: 173–184.Google Scholar
  29. Buecher, E., 1999. Appearance of Chelophyes appendiculata and Abylopsis tetragona (Cnidaria, Siphonophora) in the Bay of Villefranche, northwestern Mediterranean. J. Sea Res. 41: 295–307.Google Scholar
  30. Buecher, E., J. Goy, B. Planque, M. Etienne & S. Dallot, 1997. Long-term fluctuations of Liriope tetraphylla in Villefranche Bay between 1966 and 1993 compared to Pelagia noctiluca pullulations. Oceanol. Acta 20: 145–157.Google Scholar
  31. Caddy, J. F., 1993. Toward a comparative evaluation of human impacts on fishery ecosystems of enclosed and semi-enclosed seas. Rev. Fish. Sci. 1: 57–95.Google Scholar
  32. Caddy, J. F. & R. C. Griffiths, 1990. Recent trends in the fisheries and environment in the General Fisheries Council for the Mediterranean (GFCM) area. Gen. Fish. Counc. Mediterr. Stud. Rev. 63: 43–71.Google Scholar
  33. Calder, D., 1971. Hydroids and hydromedusae of southern Chesapeake Bay. Virginia Inst. mar. Sci. Spec. Papers in mar. Sci. 1: 1–125.Google Scholar
  34. Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13: 486–491.Google Scholar
  35. Cary, L. R., 1917. Studies on the physiology of the nervous system of Cassiopea xamachana. Carnegie Inst. Wash. Publ. 251: 121–170.Google Scholar
  36. Cociasu, A., V. Diaconu, L. Popa, L. Buga, I. Nae, L. Dorogan & V. Malciu, 1997. The nutrient stock of the Romanian Shelf of the Black Sea during the last three decades. In Oszoy, E. & A. Mikaelyan (eds), Sensitivity of Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 49–63.Google Scholar
  37. Collado Vides, L., L. Segura Puertas & M. Merino Ibarra, 1988. Observaciones sobre dos escifomedusas del genero Cassiopea en la laguna de Bojorquez, Quintana Roo, Mexico. Rev. Inv. Mar. 9: 21–27.Google Scholar
  38. Condon, R. H., M. B. Decker & J. E. Purcell, 2001. Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451 (Dev. Hydrobiol. 155): 89–95.Google Scholar
  39. Degobbis, D., S. Fonda-Umani, P. Franco, A. Malej, R. Precali & N. Smodlaka, 1995. Changes in the northern Adriatic ecosystem and the hypertrophic appearance of gelatinous aggregates. Sci. Total Envir. 165: 43–58.Google Scholar
  40. Edwards, M., A. W. G. John, H. G. Hunt & J. A. Lindley, 1999. Exceptional influx of oceanic species into the North Sea late 1997. J. mar. biol. Ass. U.K. 79: 737–739.Google Scholar
  41. Eiane, K., D. L. Aksnes & J. Giske, 1997. The significance of optical properties in competition among visual and tactile planktivores: a theoretical study. Ecol. Model. 98: 123–136.Google Scholar
  42. Eiane, K., D. L. Aksnes, E. Bagoien & S. Kaartvedt, 1999. Fish or jellies – a question of visibility? Limnol. Oceanogr. 44: 1352–1357.Google Scholar
  43. Elmgren, R., 1989. Man's impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio 18: 326–332.Google Scholar
  44. Erokhin, V. E., 1980. Invertebrates capacity for utilizing organic substances in sea water. Ekol. Morya 2: 3–15.Google Scholar
  45. Ferguson, J. C., 1988. Autoradiographic demonstration of the use of free amino acid by Sargasso Sea zooplankton. J. Plankton Res. 10: 1225–1238.Google Scholar
  46. Finenko, G. A., B. E. Anninsky, Z. A. Romanova, G. I. Abolmasova & A. E. Kideys, 2001. Chemical composition, respiration and feeding rates of the new alien ctenophore, Beroe ovata, in the Black Sea. Hydrobiologia 451 (Dev. Hydrobiol. 155): 177–186.Google Scholar
  47. Fitt, W. K. & K. Costley, 1998. The role of temperature in survival of the polyp stage of the tropical rhizostome jellyfish Cassiopea xamachana. J. exp. mar. Biol. Ecol. 222: 79–91.Google Scholar
  48. Fleck, J. & W. K. Fitt, 1999. Degrading mangrove leaves of Rhizophora mangle Linne provide a natural cue for settlement and metamorphosis of the upside down jellyfish Cassiopea xamachana Bigelow. J. exp. mar. Biol. Ecol. 234: 83–94.Google Scholar
  49. Fleck, J., W. K. Fitt & M. G. Hahn, 1999. A proline-rich peptide originating from decomposing mangrove leaves is one natural metamorphic cue of the tropical jellyfish Cassiopea xamachana. Mar. Ecol. Prog. Ser. 183: 115–124.Google Scholar
  50. Fransz, H. G., J. M. Colebrook, J. C. Gamble & M. Krause, 1991. The zooplankton of the North Sea. Neth. J. Sea Res. 28: 1–52.CrossRefGoogle Scholar
  51. Fraser, J. H., 1967. Siphonophora in the plankton to the north and west of the British Isles. Proc. r. Soc. Edinb. Sect. B (Biol.) 70: 1–30.Google Scholar
  52. Fraser, J. H., 1969. Variability in the oceanic content of plankton in the Scottish area. Prog. Oceanogr. 5: 149–159.Google Scholar
  53. Fraser, J. H., 1970. The ecology of the ctenophore Pleurobrachia pileus in Scottish waters. J. Cons. int. Explor. Mer 33: 149–168.Google Scholar
  54. Friligos, N., 1982. Some consequences of the decomposition of organic matter in the Elefsis Bay, an anoxic basin. Mar. Poll. Bull. 13: 103–106.Google Scholar
  55. Garcia, J. R. & J. M. Lopez, 1989. Seasonal patterns of phytoplankton productivity, zooplankton abundance and hydrological conditions in Laguna Joyuda, Puerto Rico. Sci. mar. 53: 625–631.Google Scholar
  56. Gomez-Aguirre, S., 1980. Variacion estacional de grandes medusas (Scyphozoa) en un sistema de lagunas costeras del sur del Golfo de Mexico (1977/1978). Bol. Inst. Oceanogr. 29: 183–185.Google Scholar
  57. Gomoiu, M.-T., 1980. Ecological observations on the jellyfish Aurelia aurita (L.) populations. Cercet. Mar. 13: 91–102.Google Scholar
  58. Gomoiu, M.-T., 1981. Some problems concerning actual ecological changes in the Black Sea. Cercet. Mar. 14: 109–127.Google Scholar
  59. González, A. C., 1979. Contribución al conocimiento de las medusas (Coelenterata) de la Laguna de Términos, Camp. México. An. Cent. Cienc. Mar Limnol. Univ. Nac. Auton. Mex. 6: 183–188.Google Scholar
  60. Goy, J., P. Morand & M. Etienne, 1989. Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep Sea Res. 36: 269–279.Google Scholar
  61. Graham, W. M., 2001. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linné) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451 (Dev. Hydrobiol. 155): 97–111.Google Scholar
  62. Graham, W. M., Pagès, F. & W. M. Hamner, 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451 (Dev. Hydrobiol. 155): 199–212.Google Scholar
  63. Greve, W., 1994. The 1989 German Bight invasion of Muggiaea atlantica. ICES (Int. Counc. Explor. Sea) J. mar. Sci. 51: 355–358.Google Scholar
  64. Gucu, A. C., 1997. Role of fishing in the Black Sea ecosystem. In Ozsoy, E. & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 149–162.Google Scholar
  65. Haahtela, I. & J. Lassig, 1967. Records of Cyanea capillata (Scyphozoa) and Hyperia galba (Amphipoda) from the Gulf of Finland and the northern Baltic. Ann. Zool. Fenn. 4: 469–471.Google Scholar
  66. Hanninen, J., I. Vuorinen & P. Hjelt, 2000. Climatic changes in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol. Oceanogr. 45: 703–710.Google Scholar
  67. Hansen, K. V., 1951. On the diurnal migration of zooplankton in relation to the discontinuity layer. J. Cons. Cons. int. Explor. Mer 17: 231–241.Google Scholar
  68. Hay, S. J., J. R. G. Hislop & A. M. Shanks, 1990. North Sea scyphomedusae: summer distribution, estimated biomass and significance particularly for 0-group gadoid fish. Neth. J. Sea Res. 25: 113–130.Google Scholar
  69. Hernroth, L. & H. Ackefors, 1979. The zooplankton of the Baltic proper. Report Institute of Marine Research Fishery Board of Sweden 2: 1–60.Google Scholar
  70. Hsieh, Y-H.P., F-M. Leong & J. Rudloe, 2001. Jellyfish as food. Hydrobiologia 451 (Dev. Hydrobiol. 155): 11–17.Google Scholar
  71. Ishii, H. & F. Tanaka, 2001. Food and feeding of Aurelia aurita in Tokyo Bay with an analysis of stomach contents and a measurement of digestion times. Hydrobiologia 451 (Dev. Hydrobiol. 155): 311–320.Google Scholar
  72. Ishii, H., S. Tadokoro, H. Yamanaka & M. Omori, 1995. Population dynamics of the jellyfish, Aurelia aurita in Tokyo Bay in 1993 with determination of ATP-related compounds. Bull. Plankton Soc. Japan 42: 171–176.Google Scholar
  73. Janas, U. & Z. Witek, 1993. The occurrence of medusae in the southern Baltic and their importance in the ecosystem, with special emphasis on Aurelia aurita. Oceanologia 34: 69–84.Google Scholar
  74. Justić, D., N. N. Rabalais, R. E. Turner & Q. Dortch, 1995. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar. coast. shelf Sci. 40: 339–356.Google Scholar
  75. Keister, J. E., E. D. Houde & D. L. Breitburg, 2000. Effects of bottom-layer hypoxia on abundance and depth distributions of organisms in Patuxent River, Chesapeake Bay. Mar. Ecol. Prog. Ser. 205: 43–59.Google Scholar
  76. Kennish, M. J., 1997. Pollution Impacts on Marine Biotic Communities. CRC Press, Boca Raton, Florida: 296 pp.Google Scholar
  77. Kideys, A. E., 1994. Recent dramatic changes in the Black Sea ecosystem: the reason for the sharp decline in Turkish anchovy fisheries. J. mar. Syst. 5: 171–181.Google Scholar
  78. Kideys, A. E., A. V. Kovalev, G. Shulman, A. Gordina & F. Bingel, 2000. A review of zooplankton investigations of the Black Sea over the last decade. J. mar. Syst. 24: 355–371.Google Scholar
  79. Kovalev, A. V. & S. A. Piontkovski, 1998. Interannual changes in the biomass of the Black Sea gelatinous zooplankton. J. Plankton Res. 20: 1377–1385.Google Scholar
  80. Kramp, P. L. & D. Damas, 1925. Les méduses de la Norvège. Introduction et Partie speciale I. Vidensk. Medd. Dan. Naturhist. Foren. 80: 217–323, pl. 35.Google Scholar
  81. Kremer, P., 1994. Patterns of abundance for Mnemiopsis in US coastal waters: a comparative overview. ICES J. mar. Sci. 51: 347–354.Google Scholar
  82. Kuhl, H., 1962. Die Hydromedusen der Elbmündung. Abh. Verh. naturwiss. Verh. Hamb. 6: 209–232.Google Scholar
  83. Kuwabara, R., S. Sato & N. Noguchi, 1969. Ecological studies on the medusa, Aurelia aurita Lamarck-I. Distribution of Aurelia patches in the north-east region of Tokyo Bay in summer 1966 and 1967. Bull. Jpn. Soc. Sci. Fish. 35: 156–162 (in Japanese with English abstract).Google Scholar
  84. Lapointe, B. E. & M. W. Clark, 1992. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15: 465–476.Google Scholar
  85. Lapointe, B. E., D. A. Tomasko & W. R. Matzie, 1994. Eutrophication and trophic state classification of seagrass communities in the Florida Keys. Bull. mar. Sci. 54: 696–717.Google Scholar
  86. Larson, R. J., 1997. Feeding behaviour of Caribbean scyphomedusae: Cassiopea frondosa (Pallas) and Cassiopea xamachana Bigelow. Uitg. Natuurwet. Studiekring Caraibisch (Stud. Nat. Hist. Carribean Region) 73: 43–54.Google Scholar
  87. Legović, T. & D. Justić, 1997. When do phytoplankton blooms cause the most intense hypoxia in the northern Adriatic Sea? Oceanol. Acta 20: 91–99.Google Scholar
  88. Lin, A. L. & P. L. Zubkoff, 1977. Enyymes associated with carbohydrate metabolism of scyphistomae of Aurelia aurita and Chrysaora quinquecirrha (Scyphozoa: Semaeostomae). Comp. Biochem. Physiol. 57B: 303–308.Google Scholar
  89. Liu, P., Y. Yu & C. Liu, 1991. Studies on the situation of pollution and countermeasures of control of the oceanic environment in Zhoushan fishing ground – the largest fishing ground in China. Mar. Pollut. Bull. 23: 281–288.Google Scholar
  90. Lucas, C. H., 1996. Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. J. Plankton Res. 18: 987–1007.Google Scholar
  91. Lucas, C. H., A. G. Hirst & J. A. Williams, 1997. Plankton dynamics and Aurelia aurita production in two contrasting ecosystems: comparisons and consequences. Estuar. coast. mar. Sci. 45: 209–219.Google Scholar
  92. Maaden, H. van der, 1942. Beobachtungen über Medusen am Strande von Katwijk aan Zee (Holland) in den Jahren 1933– 1937. Arch Neerl. Zool. 6: 347–362.Google Scholar
  93. Malakoff, D., 1998. Death by suffocation in the Gulf of Mexico. Science (Wash. D. C.) 281: 190–192.Google Scholar
  94. Malone, T. C., A. Malej, L. W. Harding Jr., N. Smodlaka & R. E. Turner (eds), 1999. Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea. Coastal estuar. Stud. 55: 1–381.Google Scholar
  95. Margonski, P. & K. Horbowa, 1996. Vertical distribution of cod eggs and medusae in the Bornholm Basin. Medd. Havsfiskelab. Lysekil 327: 7–17.Google Scholar
  96. Matsueda, N., 1969. Presentation of Aurelia aurita at thermal power station. Bull. mar. Biol. Stn. Asamushi 13: 187–191.Google Scholar
  97. Mayer, A. G., 1910. Medusae of the World Volume III The Scyphomedusae. Carnegie Institution of Washington, Washington: 735 pp.Google Scholar
  98. Merino, M., A. Gonzalez, E. Reyes, M. Gallegos & S. Czitrom, 1992. Eutrophication in the lagoons of Cancun, Mexico. Sci. Total Envir. Suppl.: 861–870.Google Scholar
  99. Mianzan, H. W., N. Mari, B. Prenski & F. Sanchez, 1996. Fish predation on neritic ctenophores from the Argentine continental shelf: a neglected food resource? Fish. Res. 27: 69–79.Google Scholar
  100. Mianzan, H., M. Pájaro, G. Alvarez Colombo & A. Madirolas, 2001. Feeding on survival-food: gelatinous plankton as a source of food for anchovies. Hydrobiologia 451 (Dev. Hydrobiol. 155): 45–53.Google Scholar
  101. Mills, C. E., 2001. Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451 (Dev. Hydrobiol. 155): 55–68.Google Scholar
  102. Mirza, F. B. & J. S. Gray, 1981. The fauna of benthic sediments from the organically enriched Oslofjord, Norway. J. exp. mar. Biol. Ecol. 54: 181–207.Google Scholar
  103. Möller, H., 1980. A summer survey of large zooplankton, particularly scyphomedusae, in North Sea and Baltic. Meeresforsch. 28: 61–68.Google Scholar
  104. Mutlu, E., 1999. Distribution and abundance of ctenophores and their zooplankton food in the Black Sea. II Mnemiopsis leidyi. Mar. Biol. 135: 603–613.Google Scholar
  105. Mutlu, E. & F. Bingel, 1999. Distribution and abundance of ctenophores, and their zooplankton food in the Black sea. I. Pleurobrachia pileus. Mar. Biol. 135: 589–601.Google Scholar
  106. Mutlu, E., F. Bingel, A. C. Gucu, V. V. Melnikov, U. Niermann, N. A. Ostr & V. E. Zaika, 1994. Distribution of the new invader Mnemiopsis sp. and the resident Aurelia aurita and Pleurobrachia pileus populations in the Black Sea in the years 1991–1993. ICES J. mar. Sci. 51: 407–421.Google Scholar
  107. Nehring, D., 1992. Eutrophication in the Baltic Sea. Sci. Total Environ. Suppl.: 673–682.Google Scholar
  108. Nicholas, K. R. & C. L. J. Frid, 1999. Occurrence of hydromedusae in the plankton off Northumberland (western central North Sea) and the role of planktonic predators. J. mar. biol. Ass. U. K. 79: 979–992.Google Scholar
  109. Nielsen, A. S., A. W. Pedersen & H. U. Riisgard, 1997. Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia 82: 297–305.Google Scholar
  110. Niermann, U. & W. Greve, 1997. Distribution and fluctuation of dominant zooplankton species in the southern Black Sea in comparison to the North Sea and Baltic Sea. In Özsoy, E. & A. Mikaelyan (eds), Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 65–77.Google Scholar
  111. Niermann, U., F. Bingel, G. Ergun & W. Greve, 1998. Fluctuation of dominant mesozooplankton species in the Black Sea, North Sea and the Baltic Sea: is a general trend recognisable? Tr. J. Zool. 22: 63–81.Google Scholar
  112. Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes and future concerns. Ophelia: 199–219.Google Scholar
  113. Nomura, H. & T. Ishimaru, 1998. Monitoring the occurrence of medusae and ctenophores in Tokyo Bay, central Japan, in recent 15 years. Umi no Kenkyu 7: 99–104.Google Scholar
  114. Nomura, H. & M. Murano, 1992. Seasonal variation of meso-and macroplankton in Tokyo Bay, central Japan. La Mer 30: 49–56.Google Scholar
  115. Olesen, N. J., 1995. Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Mar. Ecol. Prog. Ser. 124: 63–72.Google Scholar
  116. Olesen, N. J., K. Frandsen & H. U. Riisgard, 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Mar. Ecol. Prog. Ser. 105: 9–18.Google Scholar
  117. Olesen, N. J., J. E. Purcell & D. K. Stoecker, 1996. Feeding and growth of ephyrae of scyphomedusae Chrysaora quinquecirrha. Mar. Ecol. Prog. Ser. 137: 149–159.Google Scholar
  118. Omori, M., H. Ishii & A. Fujinaga, 1995. Life history strategy of Aurelia aurita (Cnidaria, Scyphomedusae) and its impact on the zooplankton community of Tokyo Bay. ICES J. mar. Sci. j52: 597–603.Google Scholar
  119. Omori, M. & E. Nakano, 2001. Jellyfish fisheries in southeast Asia. Hydrobiologia 451 (Dev. Hydrobiol. 155): 19–26.Google Scholar
  120. Otsubo, K., A. Harashima, T. Miyazaki, Y. Yasuoka & K. Muraoka, 1991. Field survey and hydraulic study of 'Aoshio' in Tokyo Bay. Mar. Pollut. Bull. 23: 51–55.Google Scholar
  121. Paerl, H.W., 1995. Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia 41: 237–259.Google Scholar
  122. Palmén, E., 1953. Seasonal occurrence of ephyrae and subsequent instars of Aurelia aurita (L.) in the shallow waters of Tvärminne, S. Finland. Arch. Soc. Zool.-Bot. Fenn.' Vanamo' 8: 122–131.Google Scholar
  123. Panayotidis, P., G. Anagnostaki & I. Siokou-Frangou, 1986. Variations saisonnieres du diametre et de la biomasse de la scyphoméduse Aurelia aurita Lam., dans la Baie d'Elefsis (Saronikos, Mer Egee). Nova Thalassia 8,Suppl. 2: 89–92.Google Scholar
  124. Panayotidis, P., E. Papathanassiou, I. Siokou-Frangou & O. Gotis-Skretas, 1985. Etude de la population de la scyphomeduse Aurelia aurita Lam. dans la Baie d'Elefsis (Saronikos, Mer Egee). Rapp. Proces-Verb. Reu. Comm. Int. Explor. Sci. Mer. Medit. 29: 191–193.Google Scholar
  125. Papathanassiou, E., P. Panayotidis & K. Anagnostaki, 1986. Reproduction and growth of Aurelia aurita in Elefsis Bay. Nova Thalassia 8,Suppl. 2: 83–88.Google Scholar
  126. Papathanassiou, E., P. Panayotidis & K. Anagnostaki, 1987. Notes on the biology and ecology of the jellyfish Aurelia aurita Lam. in Elefsis Bay (Saronikos Gulf, Greece). Mar. Ecol. (Pubbl. Stn Zool. Napoli I) 8: 49–58.Google Scholar
  127. Prodanov, K., K. Mikhailov, G. Daskalov, K. Maxim, A. Chashchin, A. Arkhipov, V. Shlyakhov, & E. Ozdamar, 1997. Environmental impact on fish resources in the Black Sea. In Ozsoy, E. & A. Mikaelyan (eds), Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 163–181.Google Scholar
  128. Purcell, J. E., 1992. Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Chesapeake Bay, U.S.A. Mar. Ecol. Prog. Ser. 87: 65–76.Google Scholar
  129. Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451 (Dev. Hydrobiol. 155): 27–44.Google Scholar
  130. Purcell, J. E. & J. H. Cowan, 1995. Predation by the scyphomedusan Chrysaora quinquecirrha on Mnemiopsis leidyi ctenophores. Mar. Ecol. Prog. Ser. 129: 63–70.Google Scholar
  131. Purcell, J. E. & D. A. Nemazie, 1992. Quantitative feeding ecology of the hydromedusan Nemopsis bachei in Chesapeake Bay. Mar. Biol. 113: 305–311.Google Scholar
  132. Purcell, J. E., A. Malej & A. Benović, 1999a. Potential links of jellyfish to eutrophication and fisheries. Coastal estuar. Stud. 55: 241–263.Google Scholar
  133. Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001a. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451 (Dev. Hydrobiol. 155): 145–175.Google Scholar
  134. Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999b. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Mar. Ecol. Prog. Ser. 180: 187–196.Google Scholar
  135. Purcell, J. E., D. L. Breitburg, M. B. Decker, W. M. Graham, M. J. Youngbluth & K. A. Raskoff, 2001b. Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In Rabalais, N. N. & R. E. Turner (eds), Coastal Hypoxia: consequences for living resources and ecosystems. American Geophysical Union. Coastal estuar. Stud. 58: 77–100.Google Scholar
  136. Rabalais, N. N. & R. E. Turner (eds), 2001. Coastal hypoxia: consequences for living resources and ecosystems. American Geophysical Union. Coastal estuar. Stud. 58: 463 pp.Google Scholar
  137. Rabalais, N. N., R. E. Turner, D. Justić, Q. Dortch, W. J Wiseman & B. K. S. Gupta, 1996. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19: 386–407.Google Scholar
  138. Reid, P. C., M. De Fatima Borges & E. Svendsen, 2001. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fish. Res. 50: 163–171.Google Scholar
  139. Reyes, E. & M. Merino, 1991. Diel dissolved oxygen dynamics and eutrophication in a shallow, well-mixed tropical lagoon (Cancun, Mexico). Estuaries 14: 372–381.Google Scholar
  140. Richardson, K. & B. B. Jorgensen, 1996. Eutrophication: definition, history and effects. Coastal estuar. Stud. 52: 1–19.Google Scholar
  141. Riisgard, H. U., C. Jurgensen & F. O. Andersen, 1996. Case study: Kertinge Nor. Coastal estuar. Stud. 52: 205–220.Google Scholar
  142. Riisgard, H. U., P. Bondo Christensen, N. J. Olesen, J. K. Petersen, M. M. Moller & P. Andersen, 1995. Biological structure in a shallow cove (Kertinge Nor, Denmark) – Control by benthic nutrient fluxes and suspension-feeding ascidians and jellyfish. Ophelia 41: 329–344.Google Scholar
  143. Roden, C. L., R. R. Lohoefener, C. M. Rogers, K. D. Mullin & B. W. Hoggard, 1990. Aspects of the ecology of the moon jellyfish, Aurelia aurita, in the northern Gulf of Mexico. Northeast Gulf Sci. 11: 63–67.Google Scholar
  144. Roginskaya, I. S., 1988. On possible relationship between Nudibranchia predation on the polyps of Aurelia aurita (L) and variations in the abundance of this jellyfish in the Black Sea. Ekol. Morya 30: 58–60 [Russian with English abstract].Google Scholar
  145. Rosenberg, R., J. S. Gray, A. B. Josefson & T. H. Pearson, 1987. Petersen's benthic stations revisited. II. Is the Oslofjord and eastern Skagerrak enriched? J. exp. mar. Biol. Ecol. 105: 219–251.Google Scholar
  146. Rottini-Sandrini, L. & M. Avian, 1986. Workshop on jellyfish in the Mediterranean Sea. Nova Thalassia 8(Suppl. 2): 1–191.Google Scholar
  147. Runge, J. A., P. Pepin & W. Silvert, 1987. Feeding behavior of the Atlantic mackerel Scomber scombrus on the hydromedusa Aglantha digitale. Mar. Biol. 94: 329–333.Google Scholar
  148. Russell, F. S., 1939. Hydrographical and biological conditions in the North Sea as indicated by plankton organisms. J. Cons. Cons. int. Explor. Mer 14: 171–192.Google Scholar
  149. Sandström, O. & T. Sörlin, 1981. Production ecology in the Northern Baltic. Hydrobiologia 76: 87–96.Google Scholar
  150. Schulz, S., 1989. Changes in the Baltic pelagic ecosystem. In Klekowski, R. Z., E. Styczyñska & L. Falkowski (eds), Proceedings of the Twenty-first European Marine Biology Symposium. Institute of Oceanology. Polish Academy of Sciences, Warsaw: 463–471.Google Scholar
  151. Schulz, S., G. Ertebjerg, G. Behrends, G. Breuel, P. Ciszewski, U. Horstmann, K. Kononen, E. Kostrichkina, J.-M. Leppanen, F. Mohlenberg, O. Dandstrom, M. Viitasalo & T. Willen, 1992. The present state of the Baltic Sea pelagic ecosystem-an assessment. In Colombo G., I. Ferrari, V. U. Ceccherelli & R. Rossi (eds), Marine Eutrophication and Population Dynamics. Olsen & Olsen, Fredenborg: 35–44.Google Scholar
  152. Scott, A., 1914. The mackerel fishery off Walney in 1913. Proc. Trans. Liverpool Biol. Soc. 28: 109–115.Google Scholar
  153. Scott, A., 1924. Food of the Irish Sea herring in 1923. Proc. Trans. Liverpool Biol. Soc. 38: 115–119.Google Scholar
  154. Segerstråle, S. G., 1951. The recent increase in salinity off the coasts of Finland and its influence upon the fauna. J. Cons. perm. int. Explor. Mer 17: 103–110.Google Scholar
  155. Shick, J. M., 1975. Uptake and utilization of dissolved glycine by Aurelia aurita scyphistomae: temperature effects on the uptake process; nutritional role of dissolved amino acids. Biol. Bull.: 117–140.Google Scholar
  156. Shiganova, T. A., 1997. Mnemiopsis leidyi abundance in the Black Sea and its impact on the pelagic community. In Ozsoy, E. & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 117–129.Google Scholar
  157. Shiganova, T. A., 1998. Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fish. Oceanogr. 7: 305–310.Google Scholar
  158. Shiganova, T. A. & Y. V. Bulgakova, 2000. Effects of gelatinous plankton on Black Sea and Sea of Azov fish and their food resources. ICES J. mar. Sci. 57: 641–648.Google Scholar
  159. Shiganova, T. A., Yu. V. Bulgakova, S. P. Volovik, Z. A. Mirzoyan & S. I. Dudkin, 2001. The new invader Beroe ovata Mayer, 1912 and its effect on the ecosystem in the northeastern Black Sea. Hydrobiologia 451 (Dev. Hydrobiol. 155): 187–197.Google Scholar
  160. Shiganova, T. A., A. E. Kideys, A. C. Gucu, U. Niermann & V. S. Khoroshilov, 1998. Changes in species diversity and abundance of the main components of the Black Sea community during the last decade. In Ivanov, I. I. & T. Oguz (eds), Ecosystem Modeling as a Management Tool for the Black Sea, Volume 1. Kluwer Academic Publishers, Dordrecht, The Netherlands: 171–188.Google Scholar
  161. Shuntov, V. P., E. P. Dulepova, V. I. Radchenko & V. V. Lapko, 1996. New data about communities of plankton and nekton of the far-eastern seas in connection with climate-oceanological reorganization. Fish. Oceanogr. 5: 38–44.Google Scholar
  162. Shushkina, E. A. & E. I. Musayeva, 1983. The role of jellyfish in the energy system of Black Sea plankton communities. Oceanology 23: 92–96.Google Scholar
  163. Shushkina, E. A. & M. Ye. Vinogradov, 1991. Long-term changes in the biomass of plankton in open areas of the Black Sea. Oceanology 31: 716–721.Google Scholar
  164. Smedstad, O. M., 1972. On the biology of Aglantha digitale rosea (Forbes) [Coelenterata: Trachymedusae] in the inner Oslofjord. Norw. J. Zool. 20: 111–135.Google Scholar
  165. Smith, H. G., 1936. Contribution to the anatomy and physiology of Cassiopea frondosa. Carnegie Inst. Wash. Publ. 475: 19–52.Google Scholar
  166. Stoecker, D. K., A. E. Michaels & L. H. Davis, 1987a. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J. Plankton Res. 9: 901–915.Google Scholar
  167. Stoecker, D. K., P. G. Verity, A. E. Michaels & L. H. Davis, 1987b. Feeding by larval and post-larval ctenophores onmicrozooplankton. J. Plankton Res. 9: 667–683.Google Scholar
  168. Sugiura, Y., 1980. On the seasonal appearance of the medusae from Harumi, Tokyo Harbour. Dokkyo Univ. Bull. lib. Arts 15: 10–15. (in Japanese).Google Scholar
  169. Sullivan, B. K., D. Van Keuren & M. Clancy, 2001. Timing and size of blooms of the ctenophore Mnemiopsis leidyi in relation to temperature in Narragansett Bay, RI. Hydrobiologia 451 (Dev. Hydrobiol. 155): 113–120.Google Scholar
  170. Sverdrup, A., 1921. Planktonundersokelser fra Kristianiafjorden, Hydromeduser. Videnskapsselskapets Skrifter I Mat.-Naturv. Klasse 1, 1–50, pl. 1–4.Google Scholar
  171. Swanberg, N., 1974. The feeding behavior of Beroe ovata. Mar. Biol. 24: 69–76.Google Scholar
  172. Tatara, K., 1991. Utilization of the biological production in eutrophicated sea areas by commercial fisheries and the environmental quality standard for fishing ground. Mar. Pollut. Bull. 23: 315–319.Google Scholar
  173. Thuesen, E. V. & J. J. Childress, 1994. Oxygen consumption rates and metabolic enzyme activities of oceanic California medusae in relation to body size and habitat depth. Biol. Bull. 187: 84–98.Google Scholar
  174. Toyokawa, M., T. Inagaki & M. Terazaki, 1997. Distribution of Aurelia aurita (Linnaeus, 1758) in Tokyo Bay; observations with echosounder and plankton net. In Den Hartog, J. C. (ed.), Proceedings of the 6th International Conference on Coelenterate Biology, 1995. National Natuurhistorisch Museum, Leiden: 483–490.Google Scholar
  175. Toyokawa, M. & M. Terazaki, 1994. Seasonal variation of medusae and ctenophores in the innermost part of Tokyo Bay. Bull. Plankton Soc. Jpn. 41: 71–75.Google Scholar
  176. Toyokawa, M., T. Furota & M. Terazaki, 2000. Life history and seasonal abundance of Aurelia aurita medusae in Tokyo Bay, Japan. Plankton Biol. Ecol. 47: 48–58.Google Scholar
  177. Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justi§, R. F. Shaw & J. Cope, 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proc. natl. Acad. Sci. 95: 13048–13051.PubMedGoogle Scholar
  178. Tviete, S., 1969. Zooplankton and the discontinuity layer in relation to echo traces in the Oslofjord. Fiskeridir. skr. Ser. Havunders. 15: 25–35.Google Scholar
  179. Uchima, M., 1988. Gut content analysis of neritic copepods Acartia omorii and Oithona davisae by a new method. Mar. Ecol. Prog. Ser. 48: 93–97.Google Scholar
  180. UNEP, 1984. Workshop on Jellyfish Blooms in the Mediterranean. (Athens, 31 October–4 November 1983). United Nations Environment Programme, Mediterranean Action Plan: 221 pp.Google Scholar
  181. UNEP, 1991. Jellyfish Blooms in the Mediterranean, Proceedings of the IIWorkshop on Jellyfish Blooms in the Mediterranean Sea (Trieste, 2–5 September 1987). Mediterranean Action Plan Tech. Rep. Ser. 47: 1–320.Google Scholar
  182. Uye, S-I., 1994. Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence. Hydrobiologia 292/293: 513–519.Google Scholar
  183. Uye, S-I. & T. Kasuya, 1999. Functional roles of ctenophores in the marine coastal ecosystem. In Okutani T., S. Ohta & R. Ueshima (eds), Update Progress in Aquatic Invertebrate Zoology. Tokai University Press, Tokyo: 57–76 (Japanese with English abstract).Google Scholar
  184. Uye, S-I. & T. Shimazu, 1997. Geographical and seasonal variations in abundance, biomass and estimated production rates of mesoand macrozooplankton in the Inland Sea of Japan. J. Oceanogr. 53: 529–538.Google Scholar
  185. Uye, S-I, N. Iwamoto, T. Ueda, H. Tamaki & K. Nakahira, 1999. Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect. Fish. Oceanogr. 8: 227–237.Google Scholar
  186. Verwey, J., 1942. Die Periodizitat im Auftreten und die aktiven und passiven Bewegungen der Quallen. Arch. Neerl. Zool. 6: 363–468.Google Scholar
  187. Vinogradov, M. Ye. & E. A. Shushkina, 1982. Estimate of the concentration of Black Sea jellyfish, ctenophores and Calanus, based on observations from the Argus submersible. Oceanology 22: 351–355.Google Scholar
  188. Vinogradov, M. E., M. V. Flint & E. A. Shushkina, 1985. Vertical distribution of mesoplankton in the open area of the Black Sea. Mar. Biol. 89: 95–107.Google Scholar
  189. Vinogradov, M. E., E. A. Shushkina & Yu. V. Bulgakova, 1996. Consumption of zooplankton by the comb jelly Mnemiopsis leidyi and pelagic fishes in the Black Sea. Oceanology 35: 523–527.Google Scholar
  190. Vinogradov, M. Ye., E. A. Shushkina, E. I. Musayeva & P. Yu. Sorokin, 1989. A newly acclimated species in the Black Sea: the ctenophore Mnemiopsis leidyi (Ctenophora: Lobata). Oceanology 29: 220–224.Google Scholar
  191. Vućetić, T., 1991. Hydrobiological variablity in the Middle Adriatic in relation with the unusual distribution or behavior of Pelagia noctiluca. Mediterranean Action Plan Tech. Rep. Ser. 47: 188–201.Google Scholar
  192. Vuorinen, I., 1987. Is the ctenophore Pleurobrachia pileus important in the ecosystem of the Bothnian Sea? Mem. Soc. Fauna Flora Fenn. 63: 91–96.Google Scholar
  193. Vuorinen, I. & E. Ranta, 1987. Dynamics of marine mesozooplankton at Seili, northern Baltic Sea, in 1967–1975. Ophelia 28: 31–48.Google Scholar
  194. Vuorinen, I. & E. Ranta, 1988. Can signs of eutrophication be found in the mesozooplankton of Seili, Archipelago Sea? Kieler Meeresforsch 6: 126–140.Google Scholar
  195. Vuorinen, I. & S. Vihersaari, 1989. Distribution and abundance of Pleurobrachia pileus (Ctenophora) in the Baltic Sea. Mem. Soc. Fauna Flora Fenn. 65: 129–131.Google Scholar
  196. Wagenaar Hummelinck, P., 1968. Caribbean scyphomedusae of the genus Cassiopea. Uitg natuurw. Studkring Suriname 25: 1–57.Google Scholar
  197. Watanabe, T. & H. Ishii, 2001. In situ estimation of ephyrae liberated from polyps of Aurelia aurita using settling plates in Tokyo Bay, Japan. Hydrobiologia 451 (Dev. Hydrobiol. 155): 247–258.Google Scholar
  198. Weisse, T. & M.-T. Gomoiu, 2000. Biomass and size structure of the scyphomedusa Aurelia aurita in the northwestern Black Sea during spring and summer. J. Plankton Res. 22: 223–239.Google Scholar
  199. Wilkerson, F. P. & R. C. Dugdale, 1984. Possible connections between sewage effluent, nutrient levels and jellyfish blooms. In Workshop on Jellyfish Blooms in the Mediterranean, UNEP, Athens: 195–201.Google Scholar
  200. Wilkerson, F. P. & P. Kremer, 1992. DIN, DON, and PO4flux by a medusa with algal symbionts. Mar. Ecol. Prog. Ser. 90: 237–250.Google Scholar
  201. Yasuda, T., 1969. Ecological studies on the jelly-fish, Aurelia aurita, in Urazoko Bay, Fukui Prefecture-I Occurrence pattern of the medusa. Bull. Jpn. Soc. Sci. Fish. 35: 1–6.Google Scholar
  202. Yasuda, T., 1970. Ecological studies on the jelly-fish, Aurelia aurita (b.), in Urazoko Bay, Fukui Prefecture – V. Vertical distribution of the medusa. Ann. Rep. Noto Mar. Lab. 10: 15–22.Google Scholar
  203. Zaika, V. Ye. & N. G. Sergeyeva, 1990. Morphology and development of Mnemiopsis mccradyi (Ctenophora, Lobata) in the Black Sea. Hydrobiol. J. 26: 1–6.Google Scholar
  204. Zaitsev, Yu. P., 1992. Recent changes in the trophic structure of the Black Sea. Fish. Oceanogr. 1: 180–189.Google Scholar
  205. Zaitsev, Yu. P., 1994. Etudes sur les péches et l'environnement dans le bassin de la mer Noire. Partie 2: Effets de l'eutrophisation sur le faune de la mer Noire. Cons. Gen. Pech. Mediterr. Etud. Rev. 64: 59–88.Google Scholar
  206. Zaitsev, Yu. P. & B. G. Alexandrov, 1997. Recent man-made changes in the Black Sea ecosystem. In Ozsoy, E. & A. Mikaelyan (eds), Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Kluwer Academic Publishers, Dordrecht, The Netherlands: 25–31.Google Scholar
  207. Zaitsev, Yu. P. & V. Mamaev, 1997. Marine biological diversity in the Black Sea: a study of change and decline. United Nations Publications, New York: 208 pp.Google Scholar
  208. Zaitsev, Yu. P. & L. N. Polischuk, 1984. An increase in the number of Aurelia aurita (L.) in the Black Sea. Ekol. Morya 17: 35–46.Google Scholar
  209. Zamponi, M. O., E. Suarez & R. Gasca, 1990. Hidromedusas (Coelenterata: Hydrozoa) y Escifomedusas (Coelenterata: Scyphozoa) de La Bahia de la Ascension, Reserva de la Biosfera de Sian Ka'an. In Navarro, D. & J. G. Robinson (eds), Diversidad Biologica en la Reserva de la Biosfera de Sian Ka'an Quintana Roo, Mexico, 8. CIQRO, University of Florida: 101–107.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Mary N. Arai
    • 1
    • 2
  1. 1.Pacific Biological StationNanaimoCanada
  2. 2.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations