Skip to main content

The Evolution of Acetyl-CoA Synthase

Abstract

Acetyl-coenzyme A synthases (ACS) are Ni–Fe–S containingenzymes found in archaea and bacteria. They are divisible into 4 classes. Class I ACS's catalyze the synthesis of acetyl-CoAfrom CO2 + 2e-, CoA, and a methyl group, and contain5 types of subunits (α, β, γ, δ, and ε). Class II enzymes catalyze essentially the reversereaction and have similar subunit composition. Class III ACS'scatalyze the same reaction as Class I enzymes, but use pyruvateas a source of CO2 and 2e-, and are composed of 2 autonomous proteins, an α2β2 tetramerand a γδ heterodimer. Class IV enzymes catabolize CO to CO2 and are α-subunit monomers. Phylogeneticanalyses were performed on all five subunits. ACS α sequences divided into 2 major groups, including Class I/II sequences and Class III/IV-like sequences. Conserved residuesthat may function as ligands to the B- and C-clusters wereidentified. Other residues exclusively conserved in Class I/IIsequences may be ligands to additional metal centers in Class I and II enzymes. ACS β sequences also separated into twogroups, but they were less divergent than the α's, and the separation was not as distinct. Class III-like β sequences contained ∼300 residues at their N-termini absent in Class I/II sequences. Conserved residues identifiedin β sequences may function as ligands to active siteresidues used for acetyl-CoA synthesis. ACS γ-sequencesseparated into 3 groups (Classes I, II, and III), while δ-sequences separated into 2 groups (Class I/II and III). These groups are less divergent than those of α sequences. ACS ε-sequence topology showed greaterdivergence and less consistency vis-à-vis the other subunits, possibly reflecting reduced evolutionary constraintsdue to the absence of metal centers. The α subunit phylogeny may best reflect the functional diversity of ACS enzymes. Scenarios of how ACS and ACS-containing organisms mayhave evolved are discussed.

This is a preview of subscription content, access via your institution.

References

  • Achenbach-Richter, L., Gupta, R., Stetter, K. O. and Woese, C. R.: 1987, 'Were the original eubacteria thermophiles?', Syst. Appl. Microbiol. 9, 34–39.

    Google Scholar 

  • Adachi, J. and Hasegawa, M.: 1994, 'MOLPHY', Ver. Institute of Statistical Mechanics, Tokyo, Japan.

    Google Scholar 

  • Balch, W. E., Schoberth, S., Tanner, R. S. and Wolfe, R. S.: 1977, 'Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria', Int. J. Syst. Bacteriol. 27, 355–361.

    Google Scholar 

  • Barondeau, D. P. and Lindahl, P. A.: 1997, 'Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the mechanism of acetyl-CoA synthesis', J. Am. Chem. Soc. 119, 3959–3970.

    Google Scholar 

  • Bhatnagar, L., Jain, M. K. and Zeikus, J. G.: 1991, 'Methanogenic Bacteria', in J. M. Shively and L. L. Barton (eds), Variation in Autotrophic Life, Academic Press, N.Y. Chapter 9, pp. 251–270.

    Google Scholar 

  • Bonam, D. and Ludden, P. W.: 1987, 'Purification and characterization of CO dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum', J. Biol. Chem. 262, 2980–2987.

    Google Scholar 

  • Brown, J. R. and Doolittle, W. F.: 1997, 'Archaea and the prokaryote-to-eukaryote transition' Microbiol. Rev. 61, 456–502.

    Google Scholar 

  • Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Dougherty, B. A., Tomb, J.-F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. L., Geoghagen, N. S. M., Weidman, J. F., Fuhrmann, J. L., Nguyen, D., Utterback, T. R., Kelley, J. M., Peterson, J. D., Sadow, P. W., Hanna, M. C., Cotton, M. D., Roberts, K. M., Hurst, M. A., Kaine, B. P., Borodovsky, M., Klenk, H.-P., Fraser, C. M., Smith, H. O., Woese, C. R. and Venter, J. C.: 1996, 'Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii', Science 273, 1058–1073.

    Google Scholar 

  • Burggraf, S., Stetter, K. O., Rouviere, P. and Woese, C. R.: 1991, 'Methanopyrus kandleri: An archaeal methanogen unrelated to all other known methanogens', Syst. Appl. Microbiol. 14, 346–351.

    Google Scholar 

  • Campbell, J. H.: 1991, 'An RNA replisome as the ancestor of the ribosome', J. Molec. Evol. 32, 3–5.

    Google Scholar 

  • Dai, Y.-R., Reed, D. W., Millstein, J. H., Hartzell, P. L., Grahame, D. A. and DeMoll, E.: 1998, 'Acetyl-CoA decarbonylase/synthase complex from Archaeoglobus fulgidus', Arch. Microbiol. 169, 525–529.

    Google Scholar 

  • Davis, B. K.: 1999, 'Evolution of the genetic code', Prog. Biophys. Mol. Biol. 72, 157–243.

    Google Scholar 

  • DeRose, V. J., Anderson, M. E., Lindahl, P. A. and Hoffman, B. M.: 1998, 'ENDOR of the C-cluster of CO dehydrogenase from Clostridium thermoaceticum: Evidence for histidine, cysteine, and hydroxyl coordination to the Fe4S4 moiety', J. Am. Chem. Soc. 120, 8767–8776.

    Google Scholar 

  • Diekert, G. B. and Thauer, R. K.: 1978, 'Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum', J. Bacteriol. 136, 597–606.

    Google Scholar 

  • Diekert, G. B., Graf, E. G. and Thauer, R. K.: 1979, 'Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum', Arch. Microbiol. 122, 117–120.

    Google Scholar 

  • Drake, H. L.: 1994, Acetogenesis, Chapman and Hall, New York.

    Google Scholar 

  • Edwards, M. R.: 1998, 'From a soup or a seed? Pyritic metabolic complexes in the origin of life', Trends in Ecology and Evolution 13, 178–181.

    Google Scholar 

  • Eggen, R. I. L., Gerrling, A. C. M., Jetten, M. S. M. and de Vos, W. M.: 1991, 'Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii', J. Biol. Chem. 266, 6883–6887.

    Google Scholar 

  • Eggen, R. I. L., van Kranenburg, R., Vriesema, A. J. M., Gerrling, A. C. M., Verhagen, M. F. J. M., Hagen, W. R. and de Vos, W.M.: 1996, 'Carbon monoxide dehydrogenase from Methanosarcina frisia Göl', J. Biol. Chem. 271, 14256–14263.

    Google Scholar 

  • Eigen, M. and Schuster, P.: 1977, 'The hypercycle, a principle of natural self-organization: Part A; emergence of a hypercycle', Die Naturwissenschaften 64, 541–565.

    Google Scholar 

  • Eigen, M. and Schuster, P.: 1978, 'The hypercycle, a principle of natural self-organization: Part B; The abstract hypercycle', Die Naturwissenschaften 65, 7–41.

    Google Scholar 

  • Eigen, M. and Schuster, P.: 1978, 'The hypercycle, a principle of natural self-organization: Part C; The realistic hypercycle', Die Naturwissenschaften 65, 341–369.

    Google Scholar 

  • Farmer, P. J., Reibenspies, J. H., Lindahl, P. A. and Darensbourg, M. Y.: 1993, 'Effects of sulfur site modification on the redox potentials of derivatives of [N,N′-Bis(2-mercaptoethyl)-1,5,-diazacyclooctanato]nickel(II)' J. Am. Chem. Soc. 115, 4665–4674.

    Google Scholar 

  • Felsenstein, J.: 1981, 'Evolutionary trees from DNA sequences: A maximum likelihood approach', J. Mol. Evol. 17, 368–376.

    Google Scholar 

  • Felsenstein, J.: 1985, 'Confidence limits on phylogenies: An approach using the bootstrap', Evol. 39, 783–791.

    Google Scholar 

  • Ferry, J. G.: 1995, 'CO Dehydrogenase', Ann. Rev. Microbiol. 49, 305–333.

    Google Scholar 

  • Ferry, J. G.: 1999, 'Enzymology of one-carbon metabolism in methanogenic pathways', FEMS Microbiol. Rev. 23, 13–38.

    Google Scholar 

  • Fothergill-Gilmore, L. A. and Michels, P. A. M.: 1993, 'Evolution of glycolysis', Progress in Biophysics and Molecular Biology 59, 105–236.

    Google Scholar 

  • Freeman, J. and Wilcox, M. H.: 1999, 'Antibiotics and Clostridium difficile', Microbes and Infection 1, 377–384.

    Google Scholar 

  • Gilbert, W.: 1986, 'Origin of Life-The RNA World', Nature 319, 618–618.

    Google Scholar 

  • Gogarten, J. P., Hilario, E. and Olendzenski, L.: 1996, 'Gene Duplication and Horizontal Gene Transfer During Early Evolution', in D. McL. Roberts, P. Sharp, G. Alderson and M. A. Collins (eds), Evolution of Microbial Life, Cambridge University Press, Cambridge, U.K., pp. 267–292.

    Google Scholar 

  • Grahame, D. A. and DeMoll, E.: 1996, 'Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri', J. Biol. Chem. 271, 8352–8358.

    Google Scholar 

  • Gupta, R. S.: 1998, 'Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes', Microbiol. and Mol. Biol. Rev. 62, 1435–1491.

    Google Scholar 

  • Henikoff, S. and Henikoff, J. G.: 1992, 'Amino acid substitution matrices from protein blocks', Proc. Natl. Acad. Sci. U.S.A. 39, 10915–10919.

    Google Scholar 

  • Hu, Z., Spangler, N. J., Anderson, M. E., Xia, J. Q., Ludden, P. W., Lindahl, P. A. and Münck, E.: 1996, 'Nature of the C-cluster in Ni-containing carbon monoxide dehydrogenases', J. Am. Chem. Soc. 118, 830–845.

    Google Scholar 

  • Huber, C. and Wächtershäuser, G.: 1997, 'Activated acetic acid by carbon fixation on (Fe, Ni) S under primordial conditions', Science 276, 245–247.

    Google Scholar 

  • Jablonski, P. E., Lu, W. P., Ragsdale, S. W. and Ferry, J. G.: 1993, 'Characterization of the metal centers in the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR and spectroelectrochemistry', J. Biol. Chem. 268, 325–329.

    Google Scholar 

  • Jones, W. J., Leigh, J. A., Mayer, F., Woese, C. R. and Wolfe, R. S.: 1983, 'Methanococcus jannaschii sp. Nov., an extremely thermophilic methanogen from a submarine hydrothermal vent', Arch. Microbiol. 136, 254–261.

    Google Scholar 

  • Jones, D. T., Taylor, W. R. and Thornton, J. M.: 1992, 'The rapid generation of mutation data matrices from protein sequences', Comp. Appl. Biosci. 8, 275–282.

    Google Scholar 

  • Joyce, G. F.: 1989, 'RNA evolution and the origins of life', Nature 338, 217–224.

    Google Scholar 

  • Kauffman, S. A.: 1986, 'Autocatalytic sets of proteins', J. Theor. Biol. 119, 1–24.

    Google Scholar 

  • Kauffman, S. A.: 1993, The Origins of Order: Self-Organization and Selection in Evolution, Oxford University Press, N.Y.

    Google Scholar 

  • Kerby, R. L., Hong, S. S., Ensign, S. A., Coppoc, L. J., Ludden, P. W. and Roberts, G. P.: 1992, 'Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system', J. Bacteriol. 174, 5284–5294.

    Google Scholar 

  • Kerby, R. L., Ludden, P. W. and Roberts, G. P.: 1995, 'Carbon monoxide dependent growth of Rhodospirillum rubrum' J. Bacteriol. 177, 2241–2244.

    Google Scholar 

  • Kim, B. H., Bellows, P., Datta, R. and Zeikus, J. G.: 1984, 'Control of carbon and electron flow in Clostridium acetobutylicum fermenation: Utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields', Appl. Environ. Microbiol. 48, 764–770.

    Google Scholar 

  • Kishino, H., Miyata, T. and Hasegawa, M.: 1990, 'Maximum likelihood inference of protein phylogeny and the origin of chloroplasts', J. Mol. Evol. 31, 151–160.

    Google Scholar 

  • Klemps, R., Cypionka, H., Widdel, F. and Pfennig, N.: 1985, 'Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species', Arch. Microbiol. 143, 203–208.

    Google Scholar 

  • Klenk, H.-P., Clayton, R. A., Tomb, J. F., White, O., Nelson, K. E., Ketchum, K. A., Dodson, R. J., Gwinn, M., Hickey, E. K., Peterson, J. D., Richardson, D. L., Kerlavage, A. R., Graham, D. E., Kyrpides, N. C., Fleischmann, R. D., Quackenbush, J., Lee, N. H., Sutton, G. G., Gill, S., Kirkness, E. F., Dougherty, B. A., McKenney, K., Adams, M. D., Loftus, B., Peterson, S., Reich, C. I., McNeil, L. K., Badger, J. H., Glodek, A., Zhou, L. X., Overbeek, R., Gocayne, J. D., Weidman, J. F., McDonald, L., Utterback, T., Cotton, M. D., Spriggs, T., Artiach, P., Kaine, B. P., Sykes, S. M., Sadow, P.W., DAndrea, K. P., Bowman, C., Fujii, C., Garland, S. A., Mason, T. M., Olsen, G. J., Fraser, C.M., Smith, H. O., Woese, C. R. and Venter, J. C.: 1997, 'The complete genome sequence of the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus', Nature 390, 364–370.

    Google Scholar 

  • Koch, A. L. and Schmidt, T. N.: 1991, 'The first cellular bioenergetic process; primitive generation of a proton-motive force', J. Mol. Evol. 33, 297–304.

    Google Scholar 

  • Krzycki, J. A., Wolkin, R. H. and Zeikus, J. G.: 1982, 'Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri', J. Bacteriol. 149, 247–254.

    Google Scholar 

  • Kurr, M., Huber, R., König, H., Jannasch, H. W., Fricke, H., Trincone, A., Kristjansson, J. K. and Stetter, K. O.: 1991, 'Methanopyrus kandleri, gen. and sp. Nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C', Arch. Microbiol. 156, 239–247.

    Google Scholar 

  • Länge, S., Scholtz, R. and Fuchs, G.: 1989, 'Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum', Arch. Microbiol. 151, 77–83.

    Google Scholar 

  • Lu, W. P., Schiau, I., Cunningham, J. R. and Ragsdale, S. W.: 1993, 'Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the recombinant protein to full activity', J. Biol. Chem. 268, 5605–5614.

    Google Scholar 

  • Lu, W. P., Jablonski, P. E., Rasche, M., Ferry, J. G. and Ragsdale, S. W.: 1994, 'Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila', J. Biol. Chem. 269, 9736–9742.

    Google Scholar 

  • Maden, B. E. H.: 1995, 'No soup for starters? Autotrophy and the origins of metabolism', Trends in Biochem. Sci. 20, 337–341.

    Google Scholar 

  • Maupin-Furlow, J. A. and Ferry, J. G.: 1996, 'Characterization of the cdhD and cdhE genes encoding subunits of the corrinoid/iron-sulfur enzyme of the CO dehydrogenase complex from Methanosarcina thermophila', J. Bacteriol. 178, 340–346.

    Google Scholar 

  • Menon, S. and Ragsdale, S. W.: 1998, 'Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis', Biochemistry 37, 5689–5698.

    Google Scholar 

  • Meyer, O. and Rhode, M.: 1984, 'Microbial Growth on C1 Compounds', in R. L. Crawford and R. S. Hanson (eds), Proc. 4th Int. Symp. Am. Soc. Microbiology, Washington DC, pp. 26–33.

  • Meyer, O. and Fiebig, K.: 1985, in H. Degn, R. P. Cox and H. Toftlund (eds), Gas Enzymology, D. Reidel, Dordrecht, pp. 147–168.

    Google Scholar 

  • Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P. and Friend, C. R. L.: 1996, 'Evidence for life on earth before 3800 million years ago', Nature 384, 55–59.

    Google Scholar 

  • Möller-Zinkhan and Thauer, R. K.: 1990, 'Anaerobic lactate oxidation to 3CO2 by Archaeoglobus fulgidus via the CODH pathway: Demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts', Arch. Microbiol. 153, 215–218.

    Google Scholar 

  • Morton, T. A., Runquist, J. A., Ragsdale, S.W., Shanumgasundaram, T., Wood, H. G. and Ljungdahl, L. G.: 1991, 'The primary structure of the subunits of carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum', J. Biol. Chem. 266, 23824–23828.

    Google Scholar 

  • Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. and Fontecilla-Camps, J. C.: 1999, Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center', Structure with Folding and Design 7, 13–23.

    Google Scholar 

  • Olsen, G. J., Woese, C. R. and Overbeek, R.: 1994, 'The winds of (evolutionary) change: Breathing new life into microbiology', J. Bacteriol. 176, 1–6.

    Google Scholar 

  • Peguin, S., Goma, G., Delorme, P. and Soucaille, P.: 1994, 'Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition', Appl. Microbiol. Biotechnol. 42, 611–616.

    Google Scholar 

  • Peters, J.W., Lanzilotta, W. N., Lemon, B. J. and Seefeldt, L. C.: 1998, 'X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution', Science 282, 1853–1858.

    Google Scholar 

  • Ragsdale, S. W., Ljungdahl, L. G. and DerVartanian, D. V.: 1983, 'Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme', J. Bacteriol. 155, 1224–1237.

    Google Scholar 

  • Ragsdale, S. W., Lindahl, P. A. and Münck, E.: 1987, 'Mössbauer, EPR, and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl coenzyme A by Clostridium thermoaceticum', J. Biol. Chem. 262, 14289–14297.

    Google Scholar 

  • Ragsdale, S. W. and Kumar, M.: 1996, 'Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase', Chem. Rev. 96, 2515–2539.

    Google Scholar 

  • Roberts, D. L., James-Hagstrom, J. E., Garvin, D. K., Gorst, C. M., Runquist, J. A., Baur, J. R., Haase, F. C. and Ragsdale, S.W.: 1989, 'Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase', Proc. Natl. Acad. Sci. U.S.A. 86, 32–36.

    Google Scholar 

  • Russell, W. K., Stålhandske, C. M. V., Xia, J., Scott, R. A. and Lindahl, P. A.: 1998, 'Spectroscopic, redox and structural characterization of the Ni-labile and nonlabile forms of the acetyl-CoA synthase active site of carbon monoxide dehydrogenase', J. Am. Chem. Soc. 120, 7502–7510.

    Google Scholar 

  • Rzhetsky, A. and Nei, M.: 1992, 'A simple method for estimating and testing minimum-evolution trees', Mol. Biol. Evol. 9, 945–967.

    Google Scholar 

  • Saitou, N. and Nei, M.: 1987, 'The neighbor-joining method: A new method for reconstructing phylogenetic trees', Mol. Biol. Evol. 4, 406–425.

    Google Scholar 

  • Schauder, R., Eikmanns, B., Thauer, R. K., Widdel, F. and Fuchs, G.: 1986, 'Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle', Arch. Microbiol. 145, 162–172.

    Google Scholar 

  • Schauder, R., Preuss, A., Jetter, M. and Fuchs, G.: 1989, 'Oxidative and reductive acetyl-CoA carbon monoxide dehydrogenase pathway in Desulfobacterium Autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase', Arch. Microbiol. 151, 84–89.

    Google Scholar 

  • Schopf, J. W.: 1996, 'Are the Oldest Fossils Cyanobacteria?' in D. McL. Roberts, P. Sharp, G. Alderson and M. A. Collins (eds), Evolution of Microbial Life, Cambridge University Press, Cambridge, U.K., pp. 23–61.

    Google Scholar 

  • Sednaoui, P. E., Mantih, B. and Cauwell, M.: 1999, ''Second look' cytotoxicity assay for the diagnosis of Clostridium difficile antibiotic-associated colitis', Pathol. Biol. 47, 415–421.

    Google Scholar 

  • Selkov, E., Maltsev, N., Olsen, G. J., Overbeek, R. and Whitman, W. B.: 1997, 'A Reconstruction of the metabolism of Methanococcus jannaschii from sequence data', Gene 197, GC11–26.

    Google Scholar 

  • Shin, H.-S., Ryu, J.-R., Han, Y.-S., Choi, Y.-J. and Yu, Y. G.: 1999, 'Random Sequence analysis of the genomic DNA of Methanopyrus kandleri and molecular cloning of the gene encoding a homologue of the catalytic subunit of CODH', J. Microbiol. Biotechnol. 9, 404–413.

    Google Scholar 

  • Smith, D. R., DoucetteStamm, L. A., Deloughery, C., Lee, H. M., Dubois, J., Aldredge, T., Bashirzadeh, R., Blakely, D., Cook, R., Gilbert, K., Harrison, D., Hoang, L., Keagle, P., Lumm, W., Pothier, B., Qiu, D. Y., Spadafora, R., Vicaire, R., Wang, Y., Wierzbowski, J., Gibson, R., Jiwani, N., Caruso, A., Bush, D., Safer, H., Patwell, D., Prabhakar, S., McDougall, S., Shimer, G., Goyal, A., Pietrokovski, S., Church, G.M., Daniels, C. J., Mao, J. I., Rice, P., Nolling, J. and Reeve, J. N.: 1997, 'Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: Functional analysis and comparative genomics', J. Bacteriol. 179, 7135–7155.

    Google Scholar 

  • Spangler, N. J., Meyers, M. R., Gierke, K. L., Kerby, R. L., Roberts, G. P. and Ludden, P. W.: 1998, 'Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states', J. Biol. Chem. 273, 4059–4064.

    Google Scholar 

  • Staples, C. R., Heo, J., Spangler, N. J., Kerby, R. L., Roberts, G. P. and Ludden, P. W.: 1999, 'Rhodospirillum rubrum CO-dehydrogenase. Part 1. Spectroscopic studies of CODH variant C531A indicate the presence of a binuclear [FeNi] cluster', J. Am. Chem. Soc. 121, 11034–11044.

    Google Scholar 

  • Swofford, D. L., Olsen, G. J., Waddell, P. J. and Hillis, D. M.: 1996, 'Phylogenetic Inference', in D. M. Hillis, C. Moritz, and B. K. Mable (eds), Molecular Systematics, Sinauer, Sunderland, Massachusetts, pp. 407–514.

    Google Scholar 

  • Swofford, D. L.: 1999, 'PAUP*, Phylogenetic Analysis Using Parsimony (* and Other Methods)', Ver. 4.0., Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Taege, A. J. and Adal, K. A.: 1999, 'Clostridium difficile diarrhea and colitis: A clinical overview' Cleveland Clinic Journal of Medicine 66, 503–507.

    Google Scholar 

  • Tan, G. O., Ensign, S. A., Ciurli, S., Scott, M. J., Hedman, B., Holm, R. H., Ludden, P.W., Korszun, Z. R., Stephens, P. J. and Hodgson, K. O.: 1992, 'On the structure of the nickel/iron/sulfur center of the carbon monoxide dehydrogenase from Rhodospirillum rubrum: An X-ray absorption spectroscopy study' Proc. Natl. Acad. Sci. U.S.A. 89, 4427–4431.

    Google Scholar 

  • Thauer, R. K.: 1998, 'Biochemistry of methanogenesis: A tribute to Marjory Stephenson', Microbiology 144, 2377–2406.

    Google Scholar 

  • Vorholt, J., Kunow, J., Stetter, K. O. and Thauer, R. K.: 1995, 'Enzymes and coenzymes of the CODH pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of CODH in the heterotrophic A. profundus', Arch. Microbiol. 163, 112–118.

    Google Scholar 

  • Vorholt, J. A., Hafenbradl, D., Stetter, K. O. and Thauer, R. K.: 1997, 'Pathways of autotrophic CO2 fixation and dissimilitory nitrate reduction to N2O in Ferroglobus placidus', Arch. Microbiol. 167, 19–23.

    Google Scholar 

  • Wächtershäuser, G.: 1988, 'Before enzymes and templates: Theory of surface metabolism', Microbiol. Rev. 52, 452–484.

    Google Scholar 

  • Wächtershäuser, G.: 1990, 'Evolution of the first metabolic cycles', Proc. Natl. Acad. Sci. U.S.A. 87, 200–204.

    Google Scholar 

  • Wächtershäuser, G.: 1992, 'Groundworks for an evolutionary biochemistry: The iron-sulfur world', Prog. Biophys. Mol. Biol. 58, 85–201.

    Google Scholar 

  • Wächtershäuser, G.: 1997, 'The origin of life and its methodological challenge', J. Theor. Biol. 187, 483–494.

    Google Scholar 

  • Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. and Stahl, D. A.: 1998, 'Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration', J. Bacteriol. 180, 2975–2982.

    Google Scholar 

  • Weimer, P. J. and Zeikus, J. G.: 1978, 'Acetate metabolism in Methanosarcina barkeri', Arch. Microbiol. 119, 175–182.

    Google Scholar 

  • Wilcox, M. H. and Modi, N.: 1999, 'Nosocomial Diarrhoea', Current Opinion in Infectious Diseases 12, 341–345.

    Google Scholar 

  • Wilson, B. E. and Lindahl, P. A.: 1999, 'Equilibrium dialysis study and mechanistic implications of coenzyme A binding to acetyl-CoA synthase/carbon monoxide dehydrogenase from Clostridium thermoaceticum', J. Biol. Inorg. Chem. 4, 742–748.

    Google Scholar 

  • Woese, C. R.: 1987, 'Bacterial Evolution', Microbiol. Rev. 51, 221–271.

    Google Scholar 

  • Woese, C. R., Kandler, O. and Wheelis, M. L.: 1990, 'Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya', Proc. Natl. Acad. Sci. U.S.A. 87, 4576–4579.

    Google Scholar 

  • Woese, C. R., Achenbach, L., Rouviere, P. and Mandelco, L.: 1991, 'Archaeal phylogeny: Reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition induced artifacts', System. Appl. Microbiol. 14, 364–371.

    Google Scholar 

  • Woese, C.: 1998, 'The Universal Ancestor', Proc. Natl. Acad. Sci. U.S.A. 95, 6854–6859.

    Google Scholar 

  • Wood, H. G.: 1991, 'Life with CO or CO2 and H2 as a source of carbon and energy', FASEB J. 5, 156–163.

    Google Scholar 

  • Wood, H. G. and Ljungdahl, L. G.: 1991, 'Autotrophic Character of Acetogenic Bacteria', in J. M. Shively and L. L. Barton (eds), Variation in Autotrophic Life, Academic Press, N.Y., Chapter 8, pp. 201–250.

    Google Scholar 

  • Xia, J. and Lindahl, P.A.: 1996, 'Assembly of an exchange-coupled [Ni:Fe4S4] cluster in the α metallosubunit of CO dehydrogenase from Clostridium thermoaceticum with spectroscopic properties and CO-binding ability mimicking the acetyl-CoA synthase active site', J. Am. Chem. Soc. 118, 483–484.

    Google Scholar 

  • Xia, J., Sinclair, J. F., Baldwin, T. O. and Lindahl, P. A.: 1996, 'CO Dehydrogenase from Clostridium thermoaceticum: Quaternary structure and stoichiometry of its SDS-induced dissociation', Biochemistry 35, 1965–1971.

    Google Scholar 

  • Xia, J., Hu, Z., Popescu, C., Lindahl, P. A. and Münck, E.: 1997, 'Mössbauer and EPR study of the Ni-activated α subunit of carbon monoxide dehydrogenase from Clostridium thermoaceticum', J. Am. Chem. Soc. 119, 8301–8312.

    Google Scholar 

  • Zeikus, J. G. and Wolfe, R. S.: 1972, 'Methanobacterium thermoautotrophicus sp., an anaerobic, autotrophic, extreme thermophile', J. Bacteriol. 109, 707–713.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Lindahl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lindahl, P.A., Chang, B. The Evolution of Acetyl-CoA Synthase. Orig Life Evol Biosph 31, 403–434 (2001). https://doi.org/10.1023/A:1011809430237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011809430237

  • acetogens
  • anaerobic
  • archaea
  • carbon monoxidedehydrogenase
  • chemo-autotrophic
  • methanogens
  • origin of life
  • phylogenetic analysis