Skip to main content
Log in

Manipulation of the napin primary structure alters its packaging and deposition in transgenic tobacco (Nicotiana tabacum L.) seeds

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Napin is a 2S storage protein found in the seeds of oilseed rape (Brassica napus L.) and related species. Using protein structural prediction programs we have identified a region in the napin protein sequence which forms a `hydrophilic loop' composed of amino acid residues located at the protein surface. Targeting this region, we have constructed two napin chimeric genes containing the coding sequence for the peptide hormone leucine-enkephalin as a topological marker. One version has a single enkephalin sequence of 11 amino acids including linkers and the second contains a tandem repeat of this peptide comprising 22 amino acids, inserted into the napin large subunit. The inserted peptide sequences alter the balance of hydrophilic to hydrophobic amino acids and introduce flexibility into this region of the polypeptide chain. The chimeric genes have been expressed in tobacco plants under the control of the seed-specific napA gene promoter. Analyses indicate that the engineered napin proteins are expressed, transported, post-translationally modified and deposited inside the protein bodies of the transgenic seeds demonstrating that the altered napin proteins behave in a similar fashion to the authentic napin protein. Detailed immunolocalisation studies indicate that the insertion of the peptide sequences has a significant effect on the distribution of the napin proteins within the tobacco seed protein bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baszczynsky, C.L. and Fallis, F. 1990. Isolation and nucleotide se-quence of a genomic clone encoding a new Brassica napus napin gene. Plant Mol. Biol. 14: 633–635.

    Google Scholar 

  • Bevan, M. 1984. Binary Agrobacterium vectors for plant transfor-mation. Nucl. Acids Res. 12: 8711–8721.

    PubMed  Google Scholar 

  • Boulter, D. and Croy, R.R.D. 1997. The structure and biosynthe-sis of legume seed storage proteins: a biological solution to the storage of nitrogen in seeds. Adv. Bot. Res. 27: 1–84.

    Google Scholar 

  • Casey, R. 1979. Immunoaffinity chromatography as a mean of purifying legumin from Pisum (pea) seeds. Biochem. J. 177: 509–520.

    PubMed  Google Scholar 

  • Chou, P.Y. and Fasman, G.D. 1978. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47: 45–148.

    PubMed  Google Scholar 

  • Coleman C.E., Clore, A.M., Ranch, J.P., Higgins, R., Lopes, M.A. and Larkins, B.A. 1997. Expression of a mutant-zein creates the floury2 phenotype in transgenic maize. Proc. Natl. Acad. Sci. USA 94: 7094–7097.

    PubMed  Google Scholar 

  • Craig, S. 1988. Structural aspects of protein accumulation in devel-oping legume seeds. Biochem. Physiol. Pflanzen 183: 159–171.

    Google Scholar 

  • Croy, R.R.D. and Gatehouse, J.A. 1985. Genetic engineering of plant storage proteins. In: J. Dodds (Ed.) Plant Genetic Engineering, Cambridge University Press, Cambridge, UK, pp. 29l–302.

    Google Scholar 

  • De Clercq, A., Vandewiele, M., De Rycke, R., Van Vamme, J., Van Montagu, M., Krebbers, E. and Vandekerckhove, J. 1990. Expression and processing of an Arabidopsis 2S albumin in transgenic tobacco. Plant Physiol. 92: 899–907.

    Google Scholar 

  • de Lumen, B.O. 1990. Molecular approaches to improving the nu-tritional and functional properties of plant seeds as food sources. J. Agric. Food Chem. 38: 1779–1788.

    Google Scholar 

  • Duranti, M. and Scarafoni, A. 1999. Modification of storage protein content and quality in legume seeds. J. New Seeds 1: 17–35.

    Google Scholar 

  • Ellerström, M., Stålberg, K., Ezcurra, I. and Rask, L. 1996. Func-tional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol. Biol. 32: 1019–1027.

    PubMed  Google Scholar 

  • Ellis, J.R., Shirsat, A.H., Hepher, A., Yarwood, J.N., Gatehouse, J.A., Croy, R.R.D. and Boulter, D. 1988. Tissue-specific expres-sion of a pea legumin gene in seeds of Nicotiana plumbaginifolia. Plant Mol. Biol. 10: 203–214.

    Google Scholar 

  • Ericson, M.L., Rödin, J., Lenman, M., Glimelius, K., Josefsson, L.-G. and Rask, L. 1986. Structure of the rapeseed 1.7S storage protein, napin, and its precursor. J. Biol. Chem. 261: 14576–14581.

    PubMed  Google Scholar 

  • Garnier, J., Osguthorpe, D.J. and Robson, B. 1978. Analysis of the accuracy and implication of methods for prediction of secondary structure of globular proteins. J. Mol. Biol. 120: 97–120.

    PubMed  Google Scholar 

  • Gifford, D.J., Greenwood, J.S. and Bewley, J.D. 1982. Deposition of matrix and crystalloid storage proteins during protein body development in the endosperm of Ricinus communis L. cv. Hale seeds. Plant Physiol. 69: 1471–1478

    Google Scholar 

  • Graham, D.E. 1978. The isolation of high molecular weight DNA from whole organisms or large tissue masses. Anal. Biochem. 85: 609–613.

    PubMed  Google Scholar 

  • Greenwood, J.S. and Chrispeels, M.J. 1985. Correct targeting of bean storage protein phaseolin in the seeds of transformed tobacco. Plant Physiol. 92: 65–71.

    Google Scholar 

  • Hara-Nishimura, I., Nishimura, M. and Akazawa, T. 1985. Biosyn-thesis and intracellular transport of 11S globulin in developing pumpkin cotyledons. Plant Physiol. 77: 747–752.

    Google Scholar 

  • Hara-Nishimura, I., Takeuki, Y., Inoue, K. and Nishimura, M. 1993. Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J. 4: 793–800.

    PubMed  Google Scholar 

  • Herman, E.M. and Larkins, B.A. 1999. Protein storage bodies and vacuoles. Plant Cell 11: 601–623.

    PubMed  Google Scholar 

  • Higgins, T.J.V. 1984. Synthesis and regulation of major proteins in seeds. Annu. Rev. Plant Physiol. 35: 191–221.

    Google Scholar 

  • Higgins, T.J.V., Newbigin, E.J., Spender, D., Llewellyn, D.J. and Craig, S. 1988. The sequence of a pea vicilin gene and its expression in transgenic tobacco plants. Plant Mol. Biol. 11: 683–695.

    Google Scholar 

  • Hoglünd, A.-S., Rödin, J., Larsson, E. and Rask, K. 1992. Distri-bution of napin and cruciferin in developing rape seed embryos. Plant Physiol. 98: 509–515.

    Google Scholar 

  • Hopp, T.P. and Woods, K.R. 1981. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 78: 3824–3828.

    PubMed  Google Scholar 

  • Jiang, L., Phillips, T.E., Rogers, S. and Rogers, J.C. 2000. Biogen-esis of the protein storage vacuole crystalloid. J. Cell Biol. 150: 755–769.

    Google Scholar 

  • Josefsson, L.-G., Lenman, M., Ericson, M.L. and Rask, L. 1987. Structure of a gene encoding the 1.7S storage protein, napin, from Brassica napus. J. Biol. Chem. 262: 12196–12201.

    PubMed  Google Scholar 

  • Karplus, P.A. and Schultz, G.E. 1985. Prediction of chain flexibility in proteins. Naturwissenschaften 72: 212–213.

    Google Scholar 

  • Kermode, A.R. 1996. Mechanisms of intracellular protein transport and targeting in plant cells. Crit. Rev. Plant Sci. 15: 285–423.

    Google Scholar 

  • Kyte, J. and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.

    PubMed  Google Scholar 

  • Krebbers, E., Herdies, L., De Clercq, A., Seurinck, J., Leemans, J., Van Damme, J., Segura, M., Gheysen, G., Van Montagu, M. and Vandekerckhove, J. 1988. Determination of the processing sites of an Arabidopsis 2S albumin and characterization of the complete gene family. Plant Physiol. 87: 859–866.

    Google Scholar 

  • Krebbers, E., Van Rompaey, J. and Vandekerckhove, J. 1993. Ex-pression of modified seed storage proteins in transgenic plants. In: A.C. Hiatt (Ed.) Transgenic Plants, Marcel Dekker, New York, pp. 37–60.

    Google Scholar 

  • Lending, C.R., Chesnut, R.S., Shaw, K.L. and Larkins, B.A. 1989. Immunolocalization of avenin and globulin storage proteins in developing endosperm of Avena sativa L. Planta 178: 315–324.

    Google Scholar 

  • Lilley, G.G. and Inglis, A.S. 1986.Amino acid sequence of con-glutin ä, a sulfur-rich seed protein of Lupinus angustifolius L. FEBS Lett. 195: 235–241.

    Google Scholar 

  • Lott, J.N.A. and Buttrose, M.S. 1978. Globoids in protein bodies of legume seed cotyledons. Aust. J. Plant Physiol. 5: 89–111.

    Google Scholar 

  • Lott, J.N.A., Larsen, P.L. and Buttrose, M.S. 1971. Protein bodies from the cotyledons of Cucurbita maxima. Can. J. Bot. 49: 1777–1782.

    Google Scholar 

  • Marcellino, L.H., Neshich, G., Grossi de Sá, M.F., Krebbers, E. and Gander, E.S. 1996. Modified 2S albumins with improved tryptophan content are correctly expressed in transgenic tobacco plants. FEBS Lett. 385: 154–158.

    PubMed  Google Scholar 

  • Matsudaira, P. 1987. Sequence from picomole quantities of pro-teins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262: 10035–10038.

    PubMed  Google Scholar 

  • Müntz, K. 1989. Intracellular protein sorting and the formation of protein reserves in storage tissue cells of plants seeds. Biochem. Physiol. Pflanzen 185: 315–335.

    Google Scholar 

  • Murén, E. and Rask, L. 1996. Processing in vitro of pronapin, the 2S storage-protein precursor of Brassica napus produced in a baculovirus expression system. Planta 200: 373–379.

    PubMed  Google Scholar 

  • Murén, E., Bo, E. and Rask, L. 1995. Processing of the 2S storage protein pronapin in Brassica napus and in transformed tobacco. Eur. J. Biochem. 227: 316–321.

    PubMed  Google Scholar 

  • Murphy, D.J., Cummins, I. and Ryan, A.J. 1989. Immunocytochem-ical and biochemical study of the biosynthesis and mobilisation of the major seed storage proteins of Brassica napus.Plant Physiol. Biochem. 27: 647–657.

    Google Scholar 

  • Nishikawa, K. and Ooi, T. 1986. Radial locations of amino acid residues in a globular protein: correlation with the sequence. J.Biochem. 100: 1043–1047.

    PubMed  Google Scholar 

  • Radke, S.E., Andrews, B.M., Moloney, M.M., Crouch, M.L., Kridl, J.C. and Knauf, V.C. 1988. Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor. Appl. Genet. 75: 685–694.

    Article  Google Scholar 

  • Rico, M., Bruix, M., Gonzáles, C., Monsalve, R.I. and Ro-dríguez, R. 1996. 1 H NMR assignment and global fold of napin BNIb, a representative 2S albumin seed protein. Biochemistry 35: 15672–15682.

    PubMed  Google Scholar 

  • Robinson D.G. and Hinz, G. 1996. Multiple mechanisms of protein body formation in pea cotyledons. Plant Physiol. Biochem. 34: 155–163.

    Google Scholar 

  • Scofield S. and Crouch M.L. 1987. Nucleotide sequence of a mem-ber of the napin storage protein family from Brassica napus.J. Biol. Chem. 262: 12202–12208.

    PubMed  Google Scholar 

  • Shewry, P.R., Napier, J.A. and Tatham, A.S. 1995. Seed storage proteins: structures and biosynthesis. Plant Cell 7: 945–956.

    Article  PubMed  Google Scholar 

  • Stålberg, K., Ellerström, M., Josefsson, L.-G. and Rask, L. 1994. Deletion analysis of a 2S seeds storage protein promoter of Brassica napus in transgenic tobacco. Plant Mol. Biol. 23: 671–683.

    Google Scholar 

  • Stålberg, K, Ellerström, M, Sjödahl, S., Ezcurra, I., Wycliffe, P. and Rask, L. 1998. Heterologous and homologous transgenic expression directed by a 2S seed storage promoter of Brassica napus. Transgenic Res. 7: 165–172.

    Google Scholar 

  • Stayton, M., Harpster, M., Brosio, P. and Dunsmuir, P. 1991. High-level, seed-specific expression of a foreign coding sequence in Brassica napus. Aust. J. Plant Physiol. 18: 507–517.

    Google Scholar 

  • Vandekerckhove, J., Van Damme, J., Van Lijsebettens, M., Botter-man, J., De Block, M., Vandewiele, M., De Clercq, A., Lee-mans, J., Van Montagu, M. and Krebbers, E. 1989. Enkephalins produced in transgenic plants using modified 2S seed storage proteins. Bio/technology 7: 929–932.

    Article  Google Scholar 

  • Weber, E. and Neuman, D. 1980. Protein bodies, storage organelles in plant seeds. Biochem. Physiol. Pflanzen 175: 279–306.

    Google Scholar 

  • Welling, G.W., Weijer, W.J., van der Zee, R. and Welling-Wester, S. 1985. Prediction of sequential antigenic regions in proteins. FEBS Lett. 188: 215–218.

    PubMed  Google Scholar 

  • Youle, R. and Huang, A.H.C. 1981. Occurrence of low molecular weight and high-cysteine containing albumin storage protein in oilseeds of diverse species. Am. J. Bot. 68: 44–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarafoni, A., Carzaniga, R., Harris, N. et al. Manipulation of the napin primary structure alters its packaging and deposition in transgenic tobacco (Nicotiana tabacum L.) seeds. Plant Mol Biol 46, 727–739 (2001). https://doi.org/10.1023/A:1011675918805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011675918805

Navigation