Skip to main content
Log in

Preparation and Characterization of Adsorption-Selective Carbon Membranes for Gas Separation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The preparation and characterisation of adsorption-selective carbon membranes (ASCMs) is described. ASCMs can separate the components of a gas mixture depending on their adsorption strength. These membranes allow the separation of non-adsorbable or weakly adsorbable components (e.g. N2, H2, O2, etc) from the more strongly adsorbable components (e.g. hydrocarbons) in a gas mixture. They are prepared from the deposition of a thin film of a phenolic resin on the inner face of an alumina tube. Air oxidative treatment at temperatures in the range of 300–400°C, prior to carbonisation (pre-oxidation) or after carbonisation (under vacuum at 700°C) (post-oxidation) gives rise to an adsorption-selective carbon membrane. This membrane shows a high permeability and selectivity towards the separation of gas mixtures formed by hydrocarbons and N2. Taking into account the permeation and separation properties of the membranes, post-oxidation treatment is shown to be more effective than pre-oxidation. The separation characteristics of the carbon membranes are dependent on the composition of the gas mixture (i.e. proportion of more strongly adsorbable components) and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker, W.J.W., F. Kapteijn, J. Poppe, and J.A. Moulijn, “Permeation Characteristics of a Metal-Supported Silicalite-1 Zeolite Membrane,” J. Memb. Sci., 117, 57–78 (1996).

    Google Scholar 

  • Barrer, R.M. and E. Strachan, “Sorption and Surface Diffusion in Microporous Carbon Cylinders,” Proc. Roy. Soc., A231, 52–65 (1955).

    Google Scholar 

  • Breck, D.W., Zeolite Molecular Sieves, Chap. 2, Wiley, New York, 1974.

    Google Scholar 

  • Centeno, T.A. and A.B. Fuertes, “Supported Carbon Molecular Sieve Membranes Based on a Phenolic Resin,” J. Memb. Sci., 160, 201–211 (1999).

    Google Scholar 

  • Centeno, T.A. and A.B. Fuertes, “Carbon Molecular Sieve Gas Separation Membranes based on Poly(Vinylidene Chloride-co-Vinyl Chloride),” Carbon, 38, 1067–1073 (2000).

    Google Scholar 

  • Coronas, J., J.L. Falconer, and R.D. Noble, “Characterisation and Permeation Properties of ZSM-5 Tubular Membranes,” AIChE J., 43, 1797–1812 (1997).

    Google Scholar 

  • Fuertes, A.B. and T.A. Centeno, “Preparation of Asymmetric Carbon Molecular Sieve Membranes,” J. Memb. Sci., 144, 105–111 (1998).

    Google Scholar 

  • Fuertes, A.B., “Adsorption-Selective Carbon Membrane for Gas Separation,” J. Memb. Sci., 177, 9–16 (2000).

    Google Scholar 

  • Fuertes, A.B., “Effect of Air Oxidation on Gas Separation Properties of Adsorption-Selective Carbon Membranes,” Carbon, 39, 697–706 (2001).

    Google Scholar 

  • van de Graaf, J.M., F. Kapteijn, and J.A. Moulijn, “Modeling Permeation of Binary Mixtures Through Zeolite Membranes,” AIChE J., 45, 497–511 (1999).

    Google Scholar 

  • Jenkins, G.M. and K. Kawamura, Polymeric Carbons-Carbon Fibre, Glass and Char, pp. 13–15, Cambridge University Press, Cambridge, 1976.

    Google Scholar 

  • Kita, H., H. Maeda, K. Tanaka, and K. Okamoto, “Carbon Molecular Sieve Membrane Prepared from Phenolic Resin,” Chem. Lett., 2, 179–180 (1997).

    Google Scholar 

  • Kusuki, Y., H. Shimazaki, N. Tanihara, S. Nakanishi, and T. Yoshinaga, “Gas Permeation Properties and Characterisation of Asymmetric Carbon Membranes Prepared by Pyrolyzing Asymmetric Polyimide Hollow Fiber Membrane,” J. Memb. Sci., 134, 245–256 (1997).

    Google Scholar 

  • Morooka, S., K. Kusakabe, Y. Kusuki, and N. Tanihara, “Microporous Carbon Membranes,” in Recent Advances in Gas Separation by Microporous Ceramic Membranes (Membrane Science and Technology Series, 6), N.K. Kanellopoulos (Ed.), pp. 323–334, Elsevier, Anmsterdan, 2000.

    Google Scholar 

  • Rao, M.B., S. Sircar, and T.C. Golden, “Gas Separation by Adsorbent Membranes,” U. S. Patent No. 5,104,425 (1992).

  • Rao, M.B., and S. Sircar, “Nanoporous Carbon Membranes for Separation of Gas Mixtures by Selective Surface Flow,” J. Memb. Sci., 85, 253–264 (1993).

    Google Scholar 

  • Rao, M.B., S. Sircar, and T.C. Golden, “Method of Making Composite Porous Carbonaceous Membranes,” U. S. Patent No. 5,431,864 (1995).

  • Shiflett, M.B. and H.C. Foley, “Ultrasonic Deposition of High-Selective Nanoporous Carbon Membranes,” Science, 285, 1902–1905 (1999).

    Google Scholar 

  • Sircar, S., M.B. Rao, and C.M.A. Thaeron, “Selective Surface Flow Membrane for Gas Separation,” Sep. Sci. Technol., 34, 2081–2093 (1999).

    Google Scholar 

  • Soffer, A., J.E. Koresh, and S. Saggy, “Separation Device,” U. S. Patent No. 4,685,940 (1987).

  • Suda H. and K. Haraya, “Gas Permeation Through Micropores of Carbon Molecular Sieve Membranes Derived from Kapton Polyimide,” J. Phys. Chem. B., 101, 3988–3994 (1997).

    Google Scholar 

  • Yang, M., B.D. Crittenden, S.P. Perera, H. Moueddeb, and J.A. Dalmon, “The Hindering Effect of Adsorbed Components on the Permeation of a Non-Adsorbing Component Through a Microporous Silicalite Membrane: The Potential Barrier Theory,” J. Memb. Sci., 156, 1–9 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuertes, A.B. Preparation and Characterization of Adsorption-Selective Carbon Membranes for Gas Separation. Adsorption 7, 117–129 (2001). https://doi.org/10.1023/A:1011644023908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011644023908

Navigation