Advertisement

Chromosome Research

, Volume 9, Issue 6, pp 495–505 | Cite as

The 5S rDNA of mussels Mytilus galloprovincialis and M. edulis: sequence variation and chromosomal location

  • Ana Insua
  • Ruth Freire
  • Julia Ríos
  • Josefina Méndez
Article

Abstract

The 5S ribosomal DNA of the mussels Mytilus galloprovincialis and M. edulis was amplified by PCR using contiguous primers. The most general 5S rDNA amplification pattern consisted of several products in both mussels. Two main PCR products of about 250 bp and 760 bp were cloned and sequenced, revealing two classes of 5S rDNA units. These were characterized as containing an identical coding region of 119 bp but with highly divergent spacers. Clones of each unit type exhibited minimal differences except those of the large unit of M. edulis. The sequences analysed of the two mussels possess the same coding region and only six fixed base changes on the spacers. FISH, carried out with specific probes, consistently showed hybridization signals on the largest metacentric pair (two differentiated sites) and with variable frequency on two other metacentric pairs (one site on each pair). Differences in the 5S rDNA distribution between both mussels were not found. In M. edulis, chromosomes carrying 18S-28S rDNA were also identified by FISH. These correspond to two submetacentric–subtelocentric pairs, as was previously reported in M. galloprovincialis, demonstrating that the two rDNA multigene families are located on different chromosome pairs in these mussels.

FISH Mytilus 5S rDNA rRNA gene families sequence comparison 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK, eds. Evolution of Genes and Proteins. Sunderland: Sinauer Associates, pp 38-61.Google Scholar
  2. Barsotti G, Meluzzi C (1968) Osservazioni su Mytilus edulis L. e Mytilus galloprovincialis Lamarck. Conchiglie 4: 50-58.Google Scholar
  3. Cornet M (1993) A short-term culture method for chromosome preparation from somatic tissues of adult mussel (Mytilus edulis). Experientia 49: 87-90.Google Scholar
  4. Cronn RC, Zhao X, Paterson AH, Wendel JF (1996) Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J Mol Evol 42: 685-705.Google Scholar
  5. Deiana AM, Cau A, Salvadori S et al. (2000) Major and 5S ribosomal sequences of the largemouth bass Micropterus salmoides (Perciformes, Centrarchidae) are localized in GC-rich regions of the genome. Chromosome Res 8: 213-218.Google Scholar
  6. De Lucchini S, Nardi I, Barsacchi G, Batistoni R (1993) Molecular cytogenetics of the ribosomal (18S + 28S and 5S) DNA loci in primative and advanced urodele amphibians. Genome 36: 762-773.Google Scholar
  7. Dixon DR, McFadzen IRB (1987) Heterochromatin in the interphase nuclei of the common mussel Mytilus edulis L. J Exp Mar Biol Ecol 112: 1-9.Google Scholar
  8. Dixon DR, McFadzen IRB, Sisley K (1986) Heterochromatic marker regions (nucleolar organisers) in the chromosomes of the common mussel Mytilus edulis (Mollusca: Pelecypoda). J Exp Mar Biol Ecol 97: 205-212.Google Scholar
  9. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299: 111-117.Google Scholar
  10. Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol 12: 481-493.Google Scholar
  11. Fang BL, De Baere R, Vandenberghe A, De Wachter R (1982) Sequences of three molluscan 5S ribosomal RNAs confirm the validity of a dynamic secondary structure model. Nucleic Acids Res 10: 4679-4685.Google Scholar
  12. Garrido-Ramos MA, Jamilena M, Lozano R, Cárdenas S, Ruiz Rejón C, Ruiz Rejón M (1995) Cytogenetic analysis of gilthead seabream Sparus aurata (Pisces, Perciformes), a deletion affecting the NOR in a hatchery stock. Cytogenet Cell Genet 68: 3-7.Google Scholar
  13. Gecheff K, Hvarleva T, Georgiev S, Wilkes T, Karp A (1994) Cytological and molecular evidence of deletion of ribosomal RNA genes in chromosome 6 of barley (Hordeum vulgare). Genome 37: 419-425.Google Scholar
  14. Geiduschek EP, Tocchini-Valentini GP (1988) Transcription by RNA polymerase III. Ann Rev Biochem 57: 873-914.Google Scholar
  15. Gosling EM (1992a) Systematics and geographic distribution of Mytilus. In: Gosling EM, ed. The Mussel Mytilus: Ecology, Physiology, Genetics and Culture. Amsterdam: Elsevier, pp 1-20.Google Scholar
  16. Gosling EM (1992b) Genetics of Mytilus. In: Gosling EM, ed. The Mussel Mytilus: Ecology, Physiology, Genetics and Culture. Amsterdam: Elsevier, pp 309-382.Google Scholar
  17. Gosling EM (1994) Speciation and species concepts in the marine environment. In: Beaumont AR, ed. Genetics and Evolution of Aquatic Organisms. London: Chapman & Hall, pp 1-14.Google Scholar
  18. Insua A, Méndez J (1998) Physical mapping and activity of ribosomal RNA genes in mussel Mytilus galloprovincialis. Hereditas 128: 189-194.Google Scholar
  19. Insua A, Labat JP, Thiriot-Quiévreux C (1994) Comparative analysis of karyotypes and nucleolar organizer regions in different populations of Mytilus trossulus, Mytilus edulis and Mytilus galloprovincialis. J Moll Stud 60: 359-370.Google Scholar
  20. Insua A, López-Piñón MJ, Méndez J (1998) Characterization of Aequipecten opercularis (Bivalvia: Pectinidae) chromosomes by different staining techniques and fluorescent in situ hybridization. Genes Genet Syst 73: 193-200.Google Scholar
  21. Insua A, Freire R, Méndez J (1999) The 5S rDNA of the bivalve Cerastoderma edule: nucleotide sequence of the repeat unit and chromosomal location relative to 18S–28S rDNA. Genet Sel Evol 31: 509-518.Google Scholar
  22. Kellogg EA, Appels R (1995) Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140: 325-343.Google Scholar
  23. Li WH (1997) Molecular Evolution. Sunderland: Sinauer Associates.Google Scholar
  24. Martínez-Expósito MJ, Pasantes JJ, Méndez J (1994) NOR activity in larval and juvenile mussels (Mytilus galloprovincialis Lmk.). J Exp Mar Biol Ecol 175: 155-165.Google Scholar
  25. Martínez-Expósito MJ, Méndez J, Pasantes JJ (1997) Analysis of NORs and NOR-associated heterochromatin in the mussel Mytilus galloprovincialis Lmk. Chromosome Res 5: 268-273.Google Scholar
  26. Martínez-Lage A, González-Tizón A, Méndez J (1994) Characterization of different chromatin types in Mytilus galloprovincialis L. after C-banding, fluorochrome and restriction endonuclease treatments. Heredity 72: 242-249.Google Scholar
  27. Martínez-Lage A, González-Tizón A, Méndez J (1995) Chromosomal markers in three species of the genus Mytilus (Mollusca: Bivalvia). Heredity 74: 369-375.Google Scholar
  28. Martínez-Lage A, González-Tizón A, Méndez J (1996) Chromosome differences between European mussel populations (genus Mytilus). Caryologia 49: 343-355.Google Scholar
  29. Méndez J, Pasantes JJ, Martínez-Expósito MJ (1990) Banding pattern of mussel (Mytilus galloprovincialis) chromosomes induced by 2 × SSC/Giemsa-stain treatment. Mar Biol 106: 375-377.Google Scholar
  30. Moore MN, Lowe DM, Livingstone DR, Dixon DR (1986) Molecular and cellular indices of pollutant effects and their use in environmental impact assessment. Wat Sci Tech 18: 223-232.Google Scholar
  31. Morton DG, Sprague KU (1984) In vitro transcription of a silkworm 5S RNA gene requires an upstream signal. Proc Natl Acad Sci USA 81: 5519-5522.Google Scholar
  32. Nardi I, Barsacchi-Pilone G, Batistoni R, Andronico F (1977) Chromosome location of the ribosomal RNA genes in Triturus vulgaris meridionalis (Amphibia, Urodela). Chromosoma 64: 67-84.Google Scholar
  33. Pâques F, Samson ML, Jordan P, Wegnez M (1995) Structural evolution of the Drosophila 5S ribosomal genes. J Mol Evol 41: 615-621.Google Scholar
  34. Pasantes JJ, Martínez-Expósito MJ, Méndez J (1996) C-band polymorphism in the chromosomes of the mussel Mytilus galloprovincialis Lmk. Caryologia 49: 233-245.Google Scholar
  35. Pendás AM, Morán P, Freije JP, García-Vázquez E (1994) Chromosomal mapping and nucleotide sequence of two tandem repeats of Atlantic salmon 5S rDNA. Cytogenet Cell Genet 67: 31-36.Google Scholar
  36. Pieler T, Hamm J, Roeder RG (1987) The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 48: 91-100.Google Scholar
  37. Reddy P, Appels R (1989) A second locus for the 5S multigene family in Secale L.: sequence divergence in two lineages of the family. Genome 32: 456-467.Google Scholar
  38. Sajdak SL, Reed KM, Phillips RB (1998) Intraindividual and interspecies variation in the 5S rDNA of Coregonid fish. J Mol Evol 46: 680-688.Google Scholar
  39. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. A Laboratory Manual. 2nd edn. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  40. Sharp S, García A, Cooley L, Soll D (1984) Transcriptionally active and inactive gene repeats within the D. melanogaster 5S RNA gene cluster. Nucleic Acids Res 12: 7617-7632.Google Scholar
  41. Sorensen PD, Frederiksen S (1991) Characterization of human 5S rRNA genes. Nucleic Acids Res 19: 4147-4151.Google Scholar
  42. Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224: 409-411.Google Scholar
  43. Tatusova TA, Madden TL (1999) BLAST 2 sequences, a new tool for comparing protein and nuclcotide sequences. FEMS Microbiol Lett 15: 247-250.Google Scholar
  44. Thiriot-Quiévreux C, Ayraud N (1982) Les caryotypes de quelques espèces de Bivalves et de Gastéropodes marins. Mar Biol 70: 165-175.Google Scholar
  45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment by quality analysis tools. Nucleic Acids Res 24: 4876-4882.Google Scholar
  46. Trontin JF, Grandemange C, Favre JM (1999) Two highly divergent 5S rDNA unit size classes occur in composite tandem array in European larch (Larix decidua Mill.) and Japanese larch (Larix kaempferi (Lamb.) Carr.). Genome 42: 837-848.Google Scholar
  47. Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9: 407.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Ana Insua
    • 1
  • Ruth Freire
    • 1
  • Julia Ríos
    • 1
  • Josefina Méndez
    • 1
  1. 1.Departamento de Biología Celular y MolecularUniversidade da Coruña, A Zapateira s/nA CoruñaSpain

Personalised recommendations