Van der Waals Radii of Elements

Abstract

The available data on the van der Waals radii of atoms in molecules and crystals are summarized. The nature of the continuous variation in interatomic distances from van der Waals to covalent values and the mechanisms of transformations between these types of chemical bonding are discussed.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    Mack, E., The Spacing of Non-Polar Molecules in Crystal Lattices: The Atomic Domain of Hydrogen, J. Am. Chem. Soc., 1932, vol. 54, no. 6, pp. 2141–2165.

    Google Scholar 

  2. 2.

    Magat, M., Ñber die “Wirkungsradien” gebundener Atome und den Orthoeffekt beim Dipolmoment, Z. Phys. Chem. (Munich), 1932, vol. 16, no. 1, pp. 1–18.

    Google Scholar 

  3. 3.

    Pauling, L., The Nature of the Chemical Bond, Ithaca: Cornell Univ., 1960, 3rd ed.

    Google Scholar 

  4. 4.

    Kitaigorodskii, A.I., Organicheskaya kristallokhimiya (Organic Crystal Chemistry), Moscow: Akad. Nauk SSSR, 1955.

    Google Scholar 

  5. 5.

    Kitaigorodskii, A.I., Molekulyarnye kristally (Molecular Crystals), Moscow: Nauka, 1971.

    Google Scholar 

  6. 6.

    Bondi, A., Van der Waals Volumes and Radii, J. Phys. Chem., 1964, vol. 68, no. 3, pp. 441–451.

    Google Scholar 

  7. 7.

    Bondi, A., The Heat of Sublimation of Molecular Crystals: Analysis and Molecular Structure Correlation, in Condensation and Evaporation of Solids, New York: Gordon and Breach, 1964.

    Google Scholar 

  8. 8.

    Batsanov, S.S., Van der Waals Radii of Elements Evaluated from the Morse Equation, Zh. Obshch. Khim., 1998, vol. 68, no. 4, pp. 529–534.

    Google Scholar 

  9. 9.

    Zefirov, Yu.V. and Zorkii, P.M., Van der Waals Radii and Their Chemical Applications, Usp. Khim., 1989, vol. 58, no. 5, pp. 713–746.

    Google Scholar 

  10. 10.

    Zefirov, Yu.V. and Zorkii, P.M., New Chemical Applications of the van der Waals Radii, Usp. Khim., 1995, vol. 64, no. 5, pp. 446–460.

    Google Scholar 

  11. 11.

    Gavezzotti, A., The Calculation of Molecular Volume and the Use of Volume Analysis in the Investigation of Structured Media and of Solid-State Organic Reactivity, J. Am. Chem. Soc., 1983, vol. 105, no. 16, pp. 5220–5225.

    Google Scholar 

  12. 12.

    Filippini, G. and Gavezzotti, A., Empirical Intermolecular Potentials for Organic Crystals: The 6-exp Approximation Revisited, Acta Crystallogr., Sect. B: Struct. Sci., 1993, vol. 49, no. 5, pp. 868–880.

    Google Scholar 

  13. 13.

    Dunitz, J.D. and Gavezzotti, A., Attractions and Repulsions in Molecular Crystals, Acc. Chem. Res., 1999, vol. 32, no. 8, pp. 677–684.

    Google Scholar 

  14. 14.

    Wieberg, N., Lehrbuch der anorganischen Chemie, Berlin: Gruyter, 1995.

    Google Scholar 

  15. 15.

    Rowland, R.S. and Taylor, R., Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii, J. Phys. Chem., 1996, vol. 100, no. 18, pp. 7384–7391.

    Google Scholar 

  16. 16.

    Batsanov, S.S., Van der Waals Radii of Elements from Structural Inorganic Chemistry Data, Izv. Akad. Nauk, Ser. Khim., 1995, no. 1, pp. 24–29.

  17. 17.

    Batsanov, S.S., Van der Waals Radii Evaluated from Structural Parameters of Metals, Zh. Fiz. Khim., 2000, vol. 74, no. 7, pp. 1273–1276.

    Google Scholar 

  18. 18.

    Pyykkö, P. and Straka, M., Ab initio Studies of the Dimers (HgH2)2 and (HgMe2)2: Metallophilic Attraction and van der Waals Radii of Mercury, Phys. Chem. Chem. Phys., 2000, vol. 2, no. 11, pp. 2489–2493.

    Google Scholar 

  19. 19.

    Cassidy, J.M. and Whitmire, K.H., Syntheses and Structures of the Phenylbismuth/Transition-Metal Carbonyl Compounds, Inorg. Chem., 1991, vol. 30, no. 13, pp. 2788–2795.

    Google Scholar 

  20. 20.

    Batsanov, S.S., Calculation of van der Waals Radii of Atoms from Bond Distances, J. Mol. Struct., 1999, vol. 468, pp. 151–159.

    Google Scholar 

  21. 21.

    Batsanov, S.S., Intramolecular Contact Radii Close to the van der Waals Radii, Zh. Neorg. Khim., 2000, vol. 45, no. 6, pp. 992–996.

    Google Scholar 

  22. 22.

    Batsanov, S.S., Thermodynamic Estimation of Dissociation Pressure Parameters for Solid Molecular Substances, J. Phys. Chem. Solids, 1992, vol. 53, no. 2, pp. 319–321.

    Google Scholar 

  23. 23.

    Evans, C.J. and Gerry, M.C., The Pure Rotational Spectra of AuCl and AuBr, J. Mol. Spectrosc., 2000, vol. 203, no. 1, pp. 105–117.

    Google Scholar 

  24. 24.

    Anno, H., Koyanagi, T., and Matsubara, K., Epitaxial Growth of Zincblende MnTe Films as a New Magnetooptical Material, J. Cryst. Growth, 1992, vol. 117, pp. 816–819.

    Google Scholar 

  25. 25.

    Batsanov, S.S., Atomic Radii of Elements, Zh. Neorg. Khim., 1991, vol. 36, no. 12, pp. 3015–3037.

    Google Scholar 

  26. 26.

    Tsirel'son, V.G., Chemical Bonding and Thermal Motion of Atoms in Crystals, Itogi Nauki Tekh., Ser.: Kristallokhim., 1993, vol. 27.

  27. 27.

    Takeda, S., Inui, M., Tamaki, S., et al., Electron Charge Distribution in Liquid Tellurium, J. Phys. Soc. Jpn., 1993, vol. 62, no. 12, pp. 4277–4286.

    Google Scholar 

  28. 28.

    Batsanov, S.S., Structural Features and Properties of Fluorine, Oxygen, and Nitrogen Atoms in Covalent Bonds, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, no. 2, pp. 67–70.

  29. 29.

    Batsanov, S.S., Strukturnaya khimiya. Fakty i zavisimosti (Structural Chemistry: Findings and Correlations), Moscow: Mosk. Gos. Univ., 2000.

    Google Scholar 

  30. 30.

    Batsanov, S.S., Atomic Configurations in Tetrahalide Molecules, Zh. Neorg. Khim., 2000, vol. 45, no. 12, pp. 2028–2031.

    Google Scholar 

  31. 31.

    Montague, D.G., Chowdhury, M.R., Dore, J.C., and Reed, J.A., RISM Analysis of Structural Data for Tetrahedral Molecular Systems, Mol. Phys., 1983, vol. 50, no. 1, pp. 1–23.

    Google Scholar 

  32. 32.

    Jöllenbeck, K.M. and Weidner, J.U., X-ray Structural Study of the Liquid Silicon, Germanium, and Tin Tetrachlorides, Ber. Bunsen-Ges. Phys. Chem., 1987, vol. 91, no. 1, pp. 17–24.

    Google Scholar 

  33. 33.

    Misawa, M., Molecular Orientational Correlation in Liquid Halogens, J. Chem. Phys., 1989, vol. 91, no. 6, pp. 2575–2580.

    Google Scholar 

  34. 34.

    Ben-Amotz, D. and Herschbach, D.R., Estimation of Effective Diameters for Molecular Fluids, J. Phys. Chem., 1990, vol. 94, no. 3, pp. 1038–1047.

    Google Scholar 

  35. 35.

    Shil'nikov, V.I., Kuz'min, V.S., and Struchkov, Yu.T., Calculation of Atomic and Molecular Volumes and Areas, Zh. Strukt. Khim., 1993, vol. 34, no. 4, pp. 98–106.

    Google Scholar 

  36. 36.

    Batsanov, S.S., Metallic Radii of Nonmetals, Izv. Akad. Nauk, Ser. Khim., 1994, no. 2, pp. 220–222.

  37. 37.

    Náray-Szabó, I., Kristalykemia, Budapest: Akadémiai Kiadó, 1969. Translated under the title Neorganicheskaya kristallokhimiya, Budapest: Hungarian Acad. Sci., 1969.

    Google Scholar 

  38. 38.

    Donohue, J., The Structure of the Elements, New York: Wiley, 1974.

    Google Scholar 

  39. 39.

    Chauvin, R., Explicit Periodic Trend of van der Waals Radii, J. Phys. Chem., 1992, vol. 96, no. 23, pp. 9194–9197.

    Google Scholar 

  40. 40.

    Allinger, N.L., Calculation of Molecular Structure and Energy by Force-Field Methods, Adv. Phys. Org. Chem., 1976, vol. 13, pp. 1–82.

    Google Scholar 

  41. 41.

    Allinger, N.L., Zhou, X., and Bergsma, J., Molecular Mechanics Parameters, J. Mol. Struct., 1994, vol. 312, pp. 69–83.

    Google Scholar 

  42. 42.

    Batsanov, S.S., Van der Waals Radii of Metals from Spectroscopic Data, Izv. Akad. Nauk, Ser. Khim., 1994, no. 8, pp. 1374–1378.

  43. 43.

    Batsanov, S.S., On the Additivity of van der Waals Radii, J. Chem. Soc., Dalton Trans., 1998, no. 5, pp. 1541–1545.

  44. 44.

    Batsanov, S.S., Structural Aspects of van der Waals Complexes, Koord. Khim., 1998, vol. 24, no. 7, pp. 483–487.

    Google Scholar 

  45. 45.

    Batsanov, S.S., Thermodynamic Aspects of the Formation of van der Waals Molecules, Dokl. Akad. Nauk, 1996, vol. 349, no. 3, pp. 340–342.

    Google Scholar 

  46. 46.

    Batsanov, S.S., Some Aspects of van der Waals Interaction between Atoms, Zh. Fiz. Khim., 1998, vol. 72, no. 6, pp. 1008–1011.

    Google Scholar 

  47. 47.

    Alkorta, I., Rozas, I., and Elguero, J., Charge-Transfer Complexes between Dihalogen Compounds and Electron Donors, J. Phys. Chem., 1998, vol. 102, pp. 9278–9285.

    Google Scholar 

  48. 48.

    Allinger, N.L., Miller, M.A., Van Catledge, F.A., and Hirsch, J.A., The Calculation of the Conformation Structures of Hydrocarbons by the Westheimer-Hendrickson-Wiberg Method, J. Am. Chem. Soc., 1967, vol. 89, no. 17, pp. 4345–4357.

    Google Scholar 

  49. 49.

    Boese, R., Bläser, D., Heinemann, O., et al., Evidence for Electron Density Features That Accompany the Noble Gases Solidification, J. Phys. Chem., 1999, vol. 103, no. 31, pp. 6209–6213.

    Google Scholar 

  50. 50.

    Runeberg, N. and Pyykkö, P., Relativistic Pseudopotential Calculations on Xe2, RnXe, and Rn2: The van der Waals Properties of Radon, Int. J. Quantum Chem., 1998, vol. 66, no. 1, pp. 131–140.

    Google Scholar 

  51. 51.

    Komissarov, A.V. and Heaven, M.C., Spectroscopy of the \({\text{A}}_\Delta ^{\text{2}} \)-\({\text{X}}_\Pi ^{\text{2}} \) Transition of CH/D-Ar, J. Chem. Phys., 2000, vol. 113, no. 5, pp. 1775–1780.

    Google Scholar 

  52. 52.

    Harris, P.M., Mack, F., and Blake, F.C., The Atomic Arrangement in the Crystal of Orthorhombic Iodine, J. Am. Chem. Soc., 1928, vol. 50, no. 6, pp. 1583–1600.

    Google Scholar 

  53. 53.

    Kitaigorodskii, A.I., Khotsyanova, T.L., and Struchkov, Yu.T., On the Crystal Structure of Iodine, Zh. Fiz. Khim., 1953, vol. 27, no. 6, pp. 780–781.

    Google Scholar 

  54. 54.

    Zhdanov, G.S. and Zvonkova, Z.V., Evolution of Crystal-Chemical Views on the Nature of the Intermolecular Interaction and Intermolecular Radii Based on X-ray Diffraction Analysis, Tr. Inst. Kristallogr., 1954, no. 10, pp. 71–78.

  55. 55.

    Bent, H.A., Structural Chemistry of Donor-Acceptor Interactions, Chem. Rev. (Washington, D. C.), 1968, vol. 68, no. 5, pp. 587–648.

    Google Scholar 

  56. 56.

    Nyburg, S.C. and Faerman, C.H., A Revision of van der Waals Atomic Radii for Molecular Crystals: Nitrogen, Oxygen, Fluorine, Sulfur, Chlorine, Selenium, Bromine, and Iodine Bonded to Carbon, Acta Crystallogr., Sect. B: Struct. Sci., 1985, vol. 41, no. 4, pp. 274–279.

    Google Scholar 

  57. 57.

    Nyburg, S.C., Faerman, C.H., and Prasad, L., A Revision of van der Waals Atomic Radii for Molecular Crystals: II. Hydrogen Bonded to Carbon, Acta Crystallogr., Sect. B: Struct. Sci., 1987, vol. 43, no. 1, pp. 106–110.

    Google Scholar 

  58. 58.

    Bader, R.F.W., Henneker, W.H., and Cade, P.E., Molecular Charge Distributions and Chemical Binding, J. Chem. Phys., 1967, vol. 46, no. 9, pp. 3341–3363.

    Google Scholar 

  59. 59.

    Bader, R.F.W. and Bandrauk, A.D., Molecular Charge Distribution and Chemical Binding, J. Chem. Phys., 1968, vol. 49, no. 4, pp. 1653–1675.

    Google Scholar 

  60. 60.

    Bader, R.F.W., Carroll, M.T., Cheeseman, J.R., and Chang, C., Properties of Atoms in Molecules: Atomic Volumes, J. Am. Chem. Soc., 1987, vol. 109, no. 26, pp. 7968–7979.

    Google Scholar 

  61. 61.

    Ishikawa, M., Ikuta, S., Katada, M., and Sano, H., Anisotropy of van der Waals Radii of Atoms in Molecules: Alkali-Metal and Halogen Atoms, Acta Crystallogr., Sect. B: Struct. Sci., 1990, vol. 46, no. 5, pp. 592–598.

    Google Scholar 

  62. 62.

    Badenhoop, J.K. and Winhold, F., Natural Steric Analysis: Ab initio van der Waals Radii of Atoms and Ions, J. Chem. Phys., 1997, vol. 107, no. 14, pp. 5422–5432.

    Google Scholar 

  63. 63.

    Waber, J.T. and Cromer, D.T., Orbital Radii of Atoms and Ions, J. Chem. Phys., 1965, vol. 42, no. 12, pp. 4116–4123.

    Google Scholar 

  64. 64.

    Batsanov, S.S., Van der Waals Radii of Hydrogen in Gas-Phase and Condensed Molecules, Struct. Chem., 1999, vol. 10, no. 6, pp. 395–400.

    Google Scholar 

  65. 65.

    Batsanov, S.S., Anisotropy of van der Waals Atomic Radii in the Gas-Phase and Condensed Molecules, Struct. Chem., 2000, vol. 11, no. 2/3, pp. 177–183.

    Google Scholar 

  66. 66.

    Batsanov, S.S., Anisotropy in the van der Waals Area of Complex, Condensed, and Gas-Phase Molecules, Koord. Khim., 2001, vol. 27, no. 11.

  67. 67.

    Dvorak, M.A., Ford, R.S., Suenram, R.D., et al., Van der Waals vs Covalent Bonding: Microwave Characterization of a Structurally Intermediate Case, J. Am. Chem. Soc., 1992, vol. 114, no. 1, pp. 108–115.

    Google Scholar 

  68. 68.

    Klinkhammer, K.W. and Pyykkö, P., Ab initio Interpretation of the Closed-Shell Intermolecular Attraction in Dipnicogen and Dichalcogen Hydride Model Dimers, Inorg. Chem., 1995, vol. 34, no. 16, pp. 4134–4138.

    Google Scholar 

  69. 69.

    Leopold, K.R., Canagaratna, M., and Phillips, J.A., Partially Bonded Molecules from the Solid State to the Stratosphere, Acc. Chem. Res., 1997, vol. 30, no. 2, pp. 57–64.

    Google Scholar 

  70. 70.

    Aquilanti, V., Ascenzi, D., Bartolomei, M., et al., The Nature of the Bonding in the O2-O2 Dimer, J. Am. Chem. Soc., 1999, vol. 121, no. 46, p. 10794.

    Google Scholar 

  71. 71.

    Lutz, H.D., Bonding and Structure of Water Molecules in Solid Hydrates: Correlation of Spectroscopic and Structural Data, Struct. Bonding, 1988, vol. 86, pp. 97–125.

    Google Scholar 

  72. 72.

    Pyykkö, P., Strong Closed-Shell Interactions in Inorganic Chemistry, Chem. Rev. (Washington, D. C.), 1997, vol. 97, no. 5, pp. 597–636.

    Google Scholar 

  73. 73.

    Batsanov, S.S., Effect of Intermolecular Distances on the Probability of Covalent Bonding, Zh. Fiz. Khim., 2001, vol. 75, no. 4, pp. 754–756.

    Google Scholar 

  74. 74.

    Keller, R., Holzapfel, W.B., and Schulz, H., Effect of Pressure on the Atom Position in Se and Te, Phys. Rev. B: Solid State, 1977, vol. 6, no. 10, pp. 4404–4412.

    Google Scholar 

  75. 75.

    Isomäki, H.M. and von Boehm, J., Pressure Dependence of the Permittivity of Trigonal Se and Te, Phys. Rev. B: Condens. Matter, 1987, vol. 35, no. 15, pp. 8019–8023.

    Google Scholar 

  76. 76.

    Parthasarathy, G. and Holzapfel, W.B., High-Pressure Structural Phase Transition in Tellurium, Phys. Rev. B: Condens. Matter, 1988, vol. 37, no. 14, pp. 8499–8501.

    Google Scholar 

  77. 77.

    Akahama, Y., Kobayashi, M., and Kawamura, H., Pressure-Induced Structural Phase Transition in Sulfur at 83 GPa, Phys. Rev. B: Condens. Matter, 1994, vol. 48, no. 10, pp. 6862–6864.

    Google Scholar 

  78. 78.

    Kikegawa, T. and Iwasaki, H., An X-ray Diffraction Study of Lattice Compression and Phase Transition of Crystalline Phosphorus, Acta Crystallogr., Sect. B: Struct. Sci., 1983, vol. 39, no. 2, pp. 158–164.

    Google Scholar 

  79. 79.

    Beister, H.J., Strössner, K., and Syassen, K., Rhombohedral to Simple-Cubic Phase Transition in Arsenic under Pressure, Phys. Rev. B: Condens. Matter, 1990, vol. 41, pp. 5535–5543.

    Google Scholar 

  80. 80.

    Fujihisa, H., Fujii, Y., Takemura, K., and Shimomura, O., Structural Aspects of Dense Solid Halogens under High Pressure Studied by X-ray Diffraction-Molecular Dissociation and Metallization, J. Phys. Chem. Solids, 1995, vol. 56, no. 10, pp. 1439–1444.

    Google Scholar 

  81. 81.

    Bürgi, H.B., Determination of the Stereochemistry of the Reaction Pathway from Crystal Structure Data, Angew. Chem., 1975, vol. 87, no. 13, pp. 461–475.

    Google Scholar 

  82. 82.

    O'Keefe, M. and Brese, N.E., Bond-Valence Parameters for Anion-Anion Bonds in Solids, Acta Crystallogr., Sect. B: Struct. Sci., 1992, vol. 48, no. 2, pp. 152–154.

    Google Scholar 

  83. 83.

    Zachariasen, W.H., The Crystal Structure of Monoclinic Metaboric Acid, Actra Crystallogr., 1963, vol. 16, no. 5, pp. 385–389.

    Google Scholar 

  84. 84.

    Dubler, E. and Linowski, L., Proof of the Existence of a Linear, Centrosymmetric Polyiodine Ion, Helv. Chim. Acta, 1975, vol. 58, no. 8, pp. 2604–2609.

    Google Scholar 

  85. 85.

    Batsanov, S.S., Crystal-Chemical Evaluation of the Pressure of Polymorphic Transformations in Covalently Bonded Substances, Zh. Strukt. Khim., 1993, vol. 34, no. 4, pp. 112–116.

    Google Scholar 

  86. 86.

    Batsanov, S.S., Effect of High Pressure on Crystal Electronegativities of Elements, J. Phys. Chem. Solids, 1997, vol. 58, no. 3, pp. 527–532.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Batsanov, S.S. Van der Waals Radii of Elements. Inorganic Materials 37, 871–885 (2001). https://doi.org/10.1023/A:1011625728803

Download citation

Keywords

  • Inorganic Chemistry
  • Continuous Variation
  • Chemical Bonding
  • Interatomic Distance