Skip to main content
Log in

RNA polymerase I holoenzyme–promoter complexes include an associated CK2-like protein kinase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In eukaryotes, RNA polymerase I (pol I) transcribes the tandemly repeated genes that encode the precursor of 18S, 5.8S and 25S ribosomal RNAs. In plants and animals, the pol I enzyme can be purified in a holoenzyme form that is self-sufficient for promoter binding and accurate, promoter-dependent transcription in a cell-free system. In this report, we show that a casein kinase 2 (CK2)-like protein kinase co-purifies with pol I holoenzyme activity purified from broccoli (Brassica oleracea). Using an immobilized template assay, we show that the CK2-like activity is part of the protein-DNA complex that results upon binding of the holoenzyme to the rRNA gene promoter. The CK2 activity phosphorylates a similar set of holoenzyme proteins both before and after promoter binding. These data provide further evidence that pol I holoenzyme activity can be attributed to a single, multi-protein complex self-sufficient for promoter association and accurate, promoter-dependent transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, A.C., Denton, M., Kermekchiev, M. and Pikaard, C.S. 1999. Histone acetyltransferase and protein kinase activities copurify with a putative Xenopus RNA polymerase I holoenzyme self–sufficient for promoter–dependent transcription. Mol. Cell. Biol. 19: 796–806.

    Google Scholar 

  • Allende, J.E. and Allende, C.C. 1995. Protein kinases. 4. Protein kinase CK2: an enzyme with multiple substrates and a puzzling regulation. FASEB J. 9: 313–323.

    Google Scholar 

  • Berk, A.J. and Sharp, P.A. 1977. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease–digested hybrids. Cell 12: 721–732.

    Google Scholar 

  • Carroll, D. and Marshak, D.R. 1989. Serum–stimulated cell growth causes oscillations in casein kinase II activity. J. Biol. Chem. 264: 7345–7348.

    Google Scholar 

  • Dover, G.A. and Flavell, R.B. 1984. Molecular co–evolution: rDNA divergence and the maintenance of function.Cell 38: 622–623.

    Google Scholar 

  • Flavell, R.B. 1986. The structure and control of expression of ri–bosomal RNA genes. Oxford Surv. Plant Mol. Cell. Biol. 3: 252–274.

    Google Scholar 

  • Gaal, T., Bartlett, M.S., Ross, W., Turnbough, C.L. and Gourse, R.L. 1997. Transcription regulation by initiating NTP concentra–tion: rRNA synthesis in bacteria. Science 278: 2092–2097.

    Google Scholar 

  • Gaudino, R.J. and Pikaard, C.S. 1997. Cytokinin induction of RNA polymerase I transcription in Arabidopsis thaliana. J. Biol. Chem. 272: 6799–6804.

    Google Scholar 

  • Gourse, R.L., Gaal, T., Bartlett, M.S., Appleman, J.A. and Ross, W. 1996. rRNA transcription and growth rate–dependent regulation of ribosome synthesis in Escherichia coli. Annu. Rev. Microbiol. 50: 645–677.

    Google Scholar 

  • Grummt, I. 1999. Regulation of mammalian ribosomal gene tran–scription by RNA polymerase I. Prog. Nucl. Acids Res. Mol. Biol. 62: 109–154.

    Google Scholar 

  • Hannan, K.M., Hannan, R.D. and Rothblum, L.I. 1998. Transcrip–tion by RNA polymerase I. Front. Biosci. 3: 376–398.

    Google Scholar 

  • Hannan, R.D., Cavanaugh, A., Hempel, W.M., Moss, T. and Rothblum, L. 1999. Identification of a mammalian RNA poly–merase I holoenzyme containing components of the DNA re–pair/ replication system. Nucl. Acids Res. 27: 3720–3727.

    Google Scholar 

  • Hathaway, G.M., Lubben, T.H. and Traugh, J.A. 1980. Inhibition of casein kinase II by heparin. J. Biol. Chem. 255: 8038–8041.

    Google Scholar 

  • Heix, J., Vente, A., Voit, R., Budde, A., Michaelidis, T.M. and Grummt, I. 1998. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B–mediated phosphorylation. EMBO J. 17: 7373–7381.

    Google Scholar 

  • Jacob, S.T. 1995. Regulation of ribosomal gene transcription. Biochem. J. 306: 617–626.

    Google Scholar 

  • Jacob, S.T. and Ghosh, A.K. 1999. Control of RNA polymerase I–directed transcription: recent trends. J. Cell. Biochem. Suppl.: 41-50.

  • Klein, J. and Grummt, I. 1999. Cell cycle–dependent regulation of RNA polymerase I transcription: the nucleolar transcription fac–tor UBF is inactive in mitosis and early G1. Proc. Natl. Acad. Sci. USA 96: 6096–6101.

    Google Scholar 

  • Kuhn, A., Vente, A., Doree, M. and Grummt, I. 1998. Mitotic phosphorylation of the TBP–containing factor SL1 represses ribosomal gene transcription. J. Mol. Biol. 284: 1–5.

    Google Scholar 

  • Litchfield, D.W. and Luscher, B. 1993. Casein kinase II in sig–nal transduction and cell cycle regulation. Mol. Cell. Biochem. 127/128: 187–199.

    Google Scholar 

  • Lofquist, A.K., Li, H., Imboden, M.A. and Paule, M.R. 1993. Promoter opening (melting) and transcription initiation by RNA polymerase I requires neither nucleotide β,γ hydrolysis nor protein phosphorylation. Nucl. Acids Res. 21: 3233–3238.

    Google Scholar 

  • Marshak, D.R. and Carroll, D. 1991. Synthetic peptide substrates for casein kinase II. Meth. Enzymol. 200: 134–156.

    Google Scholar 

  • Meisner, H. and Czech, M.P. 1991. Phosphorylation of transcrip–tional factors and cell–cycle–dependent proteins by casein kinase II. Curr. Opin. Cell Biol. 3: 474–483.

    Google Scholar 

  • Nomura, M. 1999. Regulation of ribosome biosynthesis in Es–cherichiacoli and Saccharomyces cerevisiae: diversity and common principles. J. Bact. 181: 6857–6864.

    Google Scholar 

  • O'Mahony, D.J., Smith, S.D., Xie, W. and Rothblum, L.I. 1992a. Analysis of the phosphorylation, DNA–binding and dimerization properties of the RNA polymerase I transcription factors UBF1 and UBF2. Nucl. Acids Res. 20: 1301–1308.

    Google Scholar 

  • O'Mahony, D.J., Xie, W.Q., Smith, S.D., Singer, H.A. and Rothblum, L.I. 1992b. Differential phosphorylation and local–ization of the transcription factor UBF in vivo in response to serum deprivation. In vitro dephosphorylation of UBF reduces its transactivation properties. J. Biol. Chem. 267: 35–38.

    Google Scholar 

  • Paule, M.R. and White, R.J. 2000. Survey and summary: tran–scription by RNA polymerases I and III. Nucl. Acids Res. 28: 1283–1298.

    Google Scholar 

  • Reeder, R.H. 1974. Ribosomes from eukaryotes: genetics. In: M. Nomura (Ed.) Ribosomes, Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 489–519.

    Google Scholar 

  • Reeder, R.H. 1999. Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog. Nucl. Acid Res. Mol. Biol. 62: 293–327.

    Google Scholar 

  • Saez–Vasquez, J. and Pikaard, C.S. 1997. Extensive purification of a putative RNA polymerase I holoenzyme from plants that ac–curately initiates rRNA gene transcription in vitro. Proc. Natl. Acad. Sci. USA 94: 11869–11874.

    Google Scholar 

  • Saez–Vasquez, J. and Pikaard, C.S. 2000. RNA polymerase I holoenzyme–promoter interactions. J. Biol. Chem. 275: 37173–37180.

    Google Scholar 

  • Seither, P., Iben, S. and Grummt, I. 1998. Mammalian RNA polymerase I exists as a holoenzyme with associated basal transcription factors. J. Mol. Biol. 275: 43–53.

    Google Scholar 

  • Tower, J., Culotta, V.C. and Sollner–Webb, B. 1986. Factors and nucleotide sequences that direct ribosomal DNA transcription and their relationship to the stable transcription complex. Mol. Cell. Biol. 6: 3451–3462.

    Google Scholar 

  • Voit, R., Schnapp, A., Kuhn, A., Rosenbauer, H., Hirschmann, P., Stunnenberg, H.G. and Grummt, I. 1992. The nucleolar tran–scription factor mUBF is phosphorylated by casein kinase II in the C–terminal hyperacidic tail which is essential for transactiva–tion. EMBO J. 11: 2211–2218.

    Google Scholar 

  • Voit, R., Kuhn, A., Sander, E.E. and Grummt, I. 1995. Activation of mammalian ribosomal gene transcription requires phosphoryla–tion of the nucleolar transcription factor UBF. Nucl. Acids Res. 23: 2593–2599.

    Google Scholar 

  • Voit, R., Hoffmann, M. and Grummt, I. 1999. Phosphorylation by G1–specific CDK–cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 18: 1891–1899.

    Google Scholar 

  • Warner, J.R. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24: 437–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saez-Vasquez, J., Meissner, M. & Pikaard, C.S. RNA polymerase I holoenzyme–promoter complexes include an associated CK2-like protein kinase. Plant Mol Biol 47, 449–460 (2001). https://doi.org/10.1023/A:1011619413393

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011619413393

Navigation