Skip to main content
Log in

Endocytosis in Rat Cultured Astrocytes Is Inhibited by Unconjugated Bilirubin

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Excessive hyperbilirubinemia can cause irreversible neurological damage in the neonatal period. However, the complete understanding of the pathogenesis of unconjugated bilirubin (UCB) encephalopathy remains a matter of debate. This study investigates whether UCB inhibits the endocytosis of cationized ferritin (CF) by cultured rat astrocytes. The relationship between endocytosis and MTT reduction, as well as changes on tubulin and glial fibrillary acidic protein (GFAP) assembly, were also evaluated. Inhibition of endocytosis was complete in the presence of 171 μM UCB, while a marked decrease of CF labeling was noticed for 86 μM UCB. In addition, MTT reduction was inhibited by 60 to 76% as UCB concentrations changed from 17 to 171 μM, while alterations on both GFAP and microtubule morphology were only achieved by cell exposure to 171 μM UCB. These findings indicate that inhibition of CF endocytosis in rat cortical astrocytes by UCB is a concentration-dependent process that appears to be primarily related to a direct effect on the cell membrane and not to any alteration of cytoskeletal microtubules and intermediate filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fenwick, J. D. 1975. Neonatal jaundice as a cause of deafness. J. Laryngol. Otol. 89:925–932.

    Google Scholar 

  2. Perlman, M., Fainmesser, P., Sohmer, H., Tamari, H., Wax, Y., and Pevsmer, B. 1983. Auditory nerve-brainstem evoked responses in hyperbilirubinemic neonates. Pediatrics 72:658–664.

    Google Scholar 

  3. Sabatino, G., Verrotti, A., Ramenghi, L. A., Domizio, S., Melchionda, D., Fulgente, T., Paci, C., Andreamatteo, G. D., Thomas, A., and Onofrj, M. 1996. Newborns with hyperbilirubinemia: usefulness of brain stem auditory response evaluation. Neurophysiol. Clin. 26:363–368.

    Google Scholar 

  4. Chen, Y. and Kang, W. 1995. Effects of bilirubin on visual evoked potentials in term infants. Eur. J. Pediatr. 154:662–666.

    Google Scholar 

  5. Diamond, I. and Schmid, R. 1966. Experimental bilirubin encephalopathy. The mode of entry of bilirubin-14C into the central nervous system. J. Clin. Invest. 45:678–689.

    Google Scholar 

  6. Odell, G. B. 1980. Neonatal hyperbilirubinemia. Grune & Straton, New York.

    Google Scholar 

  7. Blanckaert, N. and Fevery, J. 1990. Physiology and pathophysiology of bilirubin metabolism. Pages 254–303, in Zakim, D. and Boyer, T. D. (eds.), Hepatology. A textbook of liver disease., WB Saunders Company, Philadelphia.

    Google Scholar 

  8. Brodersen, R. and Stern, L. 1990. Deposition of bilirubin acid in the central nervous system-a hypothesis for the development of kernicterus. Acta Paediatr. Scand. 79:12–19.

    Google Scholar 

  9. Ostrow, J. D., Mukerjee, P., and Tiribelli, C. 1994. Structure and binding of unconjugated bilirubin: relevance for physiological and pathophysiological function. J. Lipid Res. 35:1715–1737.

    Google Scholar 

  10. Penn, A. A., Enzmann, D. R., Hahn, J. S., and Stevenson, D. K., 1994. Kernicterus in a full term infant. Pediatrics 93:1003–1006.

    Google Scholar 

  11. Perlman, J. M. and Rogers, B. B. 1997. Kernicteric findings at autopsy in two sick near term infants. Pediatrics 99:612–615.

    Google Scholar 

  12. Brites, D. Bilirrubina: Contribuiçâo para o estudo do mecanismo da sua acção tóxica com particular relevância para o período neonatal precoce. (Ph.D. Thesis). 1988. Lisbon, University of Lisbon.

    Google Scholar 

  13. Amit, Y. and Boneh, A. 1993. Bilirubin inhibits protein kinase C activity and protein kinase C-mediated phosphorylation of endogenous substrates in human skin fibroblasts. Clin. Chim. Acta 223:103–111.

    Google Scholar 

  14. Brito, M. A., Silva, R., Matos, D. C., Silva, A. T., and Brites, D. 1996. Alterations of erythrocyte morphology and lipid composition by hyperbilirubinemia. Clin. Chim. Acta 249:149–165.

    Google Scholar 

  15. Haga, Y., Tempero, M. A., Kay, D., and Zetterman, R. K. 1996. Intracellular accumulation of unconjugated bilirubin inhibits phytohemagglutinin-induced proliferation and interleukin-2 production of human lymphocytes. Dig. Dis. Sci. 41:1468–1474.

    Google Scholar 

  16. Notter, M. F. and Kendig, J. W. 1986. Differential sensitivity of neural cells to bilirubin toxicity. Exp. Neurol. 94:670–682.

    Google Scholar 

  17. Amit, Y., Fedunec, S., Thomas, P. D., Poznansky, M. J., and Shiff, D. 1990. Bilirubin-neural cell interaction: characterization of initial cell surface binding leading to toxicity in the neuroblastoma cell line N-115. Biochim. Biophys. Acta 1055:36–42.

    Google Scholar 

  18. Amit, Y. and Brenner, T. 1993. Age-dependent sensitivity of cultured rat glial cells to bilirubin toxicity. Exp. Neurol. 121:248–255.

    Google Scholar 

  19. Blondeau, J.-P., Beslin, A., Chantoux, F., and Francon, J. 1993. Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes. J. Neurochem. 60:1407–1413.

    Google Scholar 

  20. Chantoux, F., Chuniaud, L., Dessante, M., Trivin, F., Blondeau, J.-P., and Francon, J. 1993. Competitive inhibition of thyroid hormone uptake into cultured rat brain astrocytes by bilirubin and bilirubin conjugates. Mol. Cell. Endocrinol. 97:145–151.

    Google Scholar 

  21. Silva, R., Mata, L. R., Gulbenkian, S., Brito, M. A., Tiribelli, C., and Brites, D. 1999. Inhibition of glutamate uptake by unconjugated bilirubin in cultured cortical rat astrocytes: role of concentration and pH. Biochem. Biophys. Res. Commun. 265:67–72.

    Google Scholar 

  22. Chen, H., Tsai, D., Wang, C., and Chen, Y. 1969. An electron microscopic and radioautographic study on experimental kernicterus. I. Bilirubin transport via astroglia. Amer. J. Pathol 56:31–58.

    Google Scholar 

  23. Chen, H., Wang, C., Tsan, K.-W., and Chen, Y. 1971. An electron microscopic and radioautographic study on experimental kernicterus. II. Bilirubin movement within neurons and release of waste products via astroglia. Amer. J. Pathol. 64:45–66.

    Google Scholar 

  24. Brites, D., Silva, R., and Brito, A. 1997. Effect of bilirubin on shape and haemolysis, under hypotonic, aggregating or nonaggregating conditions, and correlation with cell age. Scand. J. Clin. Lab. Invest. 57:337–350.

    Google Scholar 

  25. Brito, M. A., Brondino, C. D., Moura, J. J. G., and Brites, D. 2001. Effects of bilirubin molecular species on membrane dynamic properties of human erythrocyte membranes: a spin label electron paramagnetic resonance spectroscopy study. Arch. Biochem. Biophys. 387:57–65.

    Google Scholar 

  26. Hansen, T. W. R., Paulsen, O., Gjerstad, L., and Bratlid, D. 1988. Short-term exposure to bilirubin reduces synaptic activation in rat transverse hippocampal slices. Pediatr. Res. 23:453–456.

    Google Scholar 

  27. Hansen, T. W. R., Tommarello, S., and Allen, J. W. 2001. Subcellular localization of bilirubin in rat brain after in vivo i.v. administration of [3H]bilirubin. Pediatr. Res. 49:203–207.

    Google Scholar 

  28. Kaul, R., Bajpai, U. K., Shipstone, A. C., Kaul, H. K., and Murti, C. R. K. 1981. Bilirubin-induced erythrocyte membrane cytotoxicity. Exp. Mol. Pathol. 34:290–298.

    Google Scholar 

  29. Ochoa, E. L. M., Wennberg, R. P., An, Y., Tandon, T., Takashima, T., Nguyen, T., and Chui, A. 1993. Interactions of bilirubin with isolated presynaptic nerve terminal: functional effects on the uptake and release of neurotransmitters. Cell. Mol. Neurobiol. 13:69–86.

    Google Scholar 

  30. Vazquez, J., Garcia-Calvo, M., Valdivieso, F., Mayor, F., and Mayor, Jr., F. 1988. Interaction of bilirubin with the synaptosomal plasma membrane. J. Biol. Chem. 263:1255–1265.

    Google Scholar 

  31. Brann IV, B. S., Stonestreet, B. S., Oh, W., and Cashore, W. 1987. The in vivo effect of bilirubin and sulfisoxazole on cerebral oxygen, glucose, and lactate metabolism in newborn piglets. Pediatr. Res. 22:135–140.

    Google Scholar 

  32. Day, R. L. 1954. Inhibition of brain respiration in vitro by bilirubin: reversal of inhibition by various means. Am. J. Dis. Child. 504:506.

    Google Scholar 

  33. Ives, N. K., Cox, D. W. G., Gardiner, R. M., and Bachelard, H. 1988. The effects of bilirubin on brain energy metabolism during normoxia and hypoxia: an in vitro study using 31P nuclear magnetic resonance spectroscopy. Pediatr. Res. 23:569–573.

    Google Scholar 

  34. Zetterström, R. and Ernster, L. 1956. Bilirubin, an uncoupler of oxidative phosphorylation in isolated mitochondria. Nature 178:1335–1337.

    Google Scholar 

  35. Amit, Y., Chan, G., Fedunec, S., Poznansky, M. J., and Schiff, D. 1989. Bilirubin toxicity in a neuroblastoma cell line N-115: I. Effects on Na+K+ ATPase, [3H]-thymidine uptake, L-[35S]-methionine incorporation, and mitochondrial function. Pediatr. Res. 25:364–368.

    Google Scholar 

  36. Hansen, T. W. R. 1994. Bilirubin in the brain. Distribution and effects on neurophysiological and neurochemical processes. Clin. Pediatr. 33:452–459.

    Google Scholar 

  37. Hansen, T. W. R., Bratlid, D., and Walaas, S. I. 1988. Bilirubin decreases phosphorylation of synapsin I, a synaptic vesicleassociated neuronal phosphoprotein, in intact synaptosomes from rat cerebral cortex. Pediatr. Res. 23:219–223.

    Google Scholar 

  38. Robinson, M. S., Watts, C., and Zerial, M. 1996. Membrane dynamics in endocytosis. Cell 84:13–21.

    Google Scholar 

  39. Riezman, H., Woodman, P. G., van Meer, G., and Marsh, M. 1997. Molecular mechanisms of endocytosis. Cell 91:731–738.

    Google Scholar 

  40. McDonagh, A. F. and Assisi, F. 1972. The ready isomerization of bilirubin IX-a in aqueous solution. Biochem. J. 129:797–800.

    Google Scholar 

  41. Aisworth, S. K. and Karnovsky, M. J. 1972. An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections. J. Histochem. Cytochem. 20:225–229.

    Google Scholar 

  42. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208–212.

    Google Scholar 

  43. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.

    Google Scholar 

  44. Mayor, F. Jr., Diez-Guerra, J., Valdivieso, F., and Mayor, F. 1986. Effect of bilirubin on the membrane potential of rat brain synaptosomes. J. Neurochem. 47:363–369.

    Google Scholar 

  45. Wennberg, R. P., Johansen, B. B., Folbergová, J., and Siesjö, B. K. 1991. Bilirubin-induced changes in brain energy metabolism metabolism after osmotic opening of the blood-brain barrier. Pediatr. Res. 30:473–478.

    Google Scholar 

  46. Lindo, L., Iborra, F. J., Azorin, I., Gueri, C., and Renau-Piqueras, J. 1993. Analysis of the endocytic-lysosomal system (vacuolar apparatus) in astrocytes during proliferation and differentiation in primary culture. Int. J. Dev. Biol. 37:565–572.

    Google Scholar 

  47. Ortolani-Machado, C. F., Oliver, C., and Jamur, M. C. 1997. Endocytosis of cationized ferritin in rat peritoneal mast cells and eosinophils: the role of trimetaphosphatase positive lysosomes. Acta Histochem. Cytochem. 30:331–340.

    Google Scholar 

  48. Gourley, G. R. 1997. Bilirubin metabolism and kernicterus. Adv. Pediatr. 44:173–229.

    Google Scholar 

  49. Chuniaud, L., Dessante, M., Chantoux, F., Blondeau, J.-P., Francon, J., and Trivin, F. 1996. Cytotoxicity of bilirubin for human fibroblasts and rat astrocytes in culture. Effect of the ratio of bilirubin to serum albumin. Clin. Chim. Acta 256:103–114.

    Google Scholar 

  50. Ngai, K. C., Yeung, C. Y., and Karlberg, J. 1998. Modification of the MTT method for the study of bilirubin cytotoxicity. Acta Paediatr. Jpn. 40:313–317.

    Google Scholar 

  51. Berridge, M. V. and Tan, A. S. 1993. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 303:474–482.

    Google Scholar 

  52. Shearman, M. S., Hawtin, S. R., and Tailor, V. J. 1995. The intracellular component of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction is specifically inhibited by β-amyloid peptides. J. Neurochem. 65:218–227.

    Google Scholar 

  53. Liu, Y., Peterson, D. A., Kimura, H., and Schubert, D. 1997. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 69:581–593.

    Google Scholar 

  54. Liu, Y. and Schubert, D. 1997. Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis. J. Neurochem. 69:2285–2293.

    Google Scholar 

  55. Liu, Y. and Schubert, D. 1998. Steroid hormones block amyloid fibril-induced 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formazan exocytosis: relationship to neurotoxicity. J. Neurochem. 71:2322–2329.

    Google Scholar 

  56. Carmo-Fonseca, M. and David-Ferreira, J. F. 1990. Interactions of intermediate filaments with cell structures. Electron Microsc. Rev. 3:115–141.

    Google Scholar 

  57. Hansson, E., Rönnbäck, L., Lowenthal, A., and Noppe, M. 1985. Primary cultures from defined brain areas, effects of seeding time on cell growth, astroglial content and protein synthesis. Brain Res. 353:175–185.

    Google Scholar 

  58. Inagaki, M., Nakamura, Y., Takeda, M., Nishimura, T., and Inagaki, N. 1994. Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol. 4:239–243.

    Google Scholar 

  59. Renau-Piqueras, J., Zaragoza, R., De Paz, P., Baguena-Cervellera, R., Megias, L., and Guerri, C. 1989. Effects of prolonged ethanol exposure on the glial fibrillary acidic proteincontaining intermediate filaments of astrocytes in primary culture: a quantitative immunofluorescence and immunogold electron microscopic study. J. Histochem. Cytochem. 37:229–240.

    Google Scholar 

  60. Cookson, M. R. and Pentreath, V. W. 1994. Alterations in the glial fibrillary acidic protein content of primary astrocyte cultures for evaluation of glial cell toxicity. Toxicol. In Vitro 8:351–359.

    Google Scholar 

  61. Brito, M. A., Silva, R., Tiribelli, C., and Brites, D. 2000. Assessment of bilirubin toxicity to erythrocytes. Implication in neonatal jaundice management. Eur. J. Clin. Invest. 30:239–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, R.F.M., Mata, L.M., Gulbenkian, S. et al. Endocytosis in Rat Cultured Astrocytes Is Inhibited by Unconjugated Bilirubin. Neurochem Res 26, 793–800 (2001). https://doi.org/10.1023/A:1011608017870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011608017870

Navigation