Skip to main content
Log in

The candidate gene approach in plant genetics: a review

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The candidate gene (CG) approach has been applied in plant genetics in the past decade for the characterisation and cloning of Mendelian and quantitative trait loci (QTLs). It constitutes a complementary strategy to map-based cloning and insertional mutagenesis. The goal of this paper is to present an overview of CG analyses in plant genetics. CG analysis is based on the hypothesis that known-function genes (the candidate genes) could correspond to loci controlling traits of interest. CGs refer either to cloned genes presumed to affect a given trait (`functional CGs') or to genes suggested by their close proximity on linkage maps to loci controlling the trait (`positional CGs'). In plant genetics, the most common way to identify a CG is to look for map co-segregation between CGs and loci affecting the trait. Statistical association analyses between molecular polymorphisms of the CG and variation in the trait of interest have also been carried out in a few studies. The final validation of a CG will be provided through physiological analyses, genetic transformation and/or sexual complementation. Theoretical and practical applications of validated CGs in plant genetics and breeding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts M., Hekkert B., Holub E., Beynon J., Stiekema W. and Pereira A. 1998 Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 11: 251–258.

    Google Scholar 

  • Aharoni A., Keizer L.C.P., Bouwmeester H.J., Sun Z., Alvarez-Huerta M., Verhoeven H.A., Blaas J., van Houwelingen A.M.M.L., de Vos R.C.H., van der Voet H., Jansen R.C., Guis M., Mol J., Davis R.W., Schena M., van Tunen A.J. and O'Connell A.P. 2000 Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12: 647–661.

    Google Scholar 

  • Barret P., Delourme R., Renard M., Domergue F., Lessire R., Delseny M. and Roscoe T.J. 1998 A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor. Appl. Genet. 96: 177–186.

    Google Scholar 

  • Beavis W.D., Grant D., Albertsen M. and Fincher R. 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 83: 141–145.

    Google Scholar 

  • Bechtold N., Ellis J. and Pelletier G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Acad. Sci. Paris 3: 1194–1199.

    Google Scholar 

  • Bent A.F. 1996. Plant disease resistance genes: function meets structure. Plant Cell 8: 1757–1771.

    Google Scholar 

  • Bhattacharyya M., Martin C. and Smith A. 1993 The importance of starch biosynthesis in the wrinkled seed shape character of peas studied by Mendel. Plant Mol. Biol. 22: 525–531.

    Google Scholar 

  • Bhattacharyya M., Smith A.M., Ellis T.H., Hedley C. and Martin C. 1990. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starchbranching enzyme. Cell 60: 115–122.

    Google Scholar 

  • Bouvier F., Hugueney P., d'Harlingue A., Kuntz M., Camara B. 1994. Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid. Plant J. 6: 45–54.

    Google Scholar 

  • Boylan M.T. and Quail P.H. 1991. Oat phytochrome is biologically active in transgenic tomatoes. Proc. Natl. Acad. Sci. USA 88: 10806–10810.

    Google Scholar 

  • Byrne P.F. and McMullen M.D. 1996. Defining genes for agricultural traits: QTL analysis and the candidate gene approach. Probe 7: 24–27.

    Google Scholar 

  • Byrne P.F., McMullen M.D., Snooks M.E., Musket T.A., Theuri J.M., Widstrom N.W, Wiseman B.R. and Coe E.H. 1996. Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc. Natl. Acad. Sci. USA 93: 8820–8825.

    Google Scholar 

  • Cambien F., Poirier O., Lecerf L., Evans A., Cambou J.P., Arveiler D., Luc G., Bard J.M., Bara L., Ricard S. et al. 1992. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 15: 641–644.

    Google Scholar 

  • Causse M., Rocher J.P., Henry A.M., Charcosset A., Prioul J.L. and de Vienne D. 1995. Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key-enzyme loci. Mol. Breed. 1: 259–272.

    Google Scholar 

  • Causse M., Santoni S., Damerval C., Maurice A., Charcosset A., Deatrick J. and de Vienne D. 1996. A composite map of expressed sequences in maize. Genome 39: 418–432.

    Google Scholar 

  • Causse M., Saliba V., Philouze J., Buret M., Chevalier C. and Rothan C. 1999. Mapping QTLs and genes involved in tomato fruit weigth and sugar content. In: Proceedings of the Molecular Biology of Tomato Congress, York, UK.

  • Chen X., Line R.F. and Leung H. 1998. Resistance gene analogs associated with a barley locus for resistance to stripe rust. In: Heller SR (ed.), International Conference on the Status of Plant and Animal Genome Research VI. Abstracts. San Diego, CA.

  • Chetelat R.T., Klann E., Deverna J.W., Yelle S. and Bennett A.B. 1993. Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii. Plant J. 4: 643–650.

    Google Scholar 

  • Chittoor J., Kukreja K., Leung H., Nelson R., Hulbert S. and Leach J. 1999. A database of candidate genes for utilization in QTL analyses of disease resistance in plants. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego, CA.

  • Corder E.H., Saunders A.M., Risch N.J., Strittmatter W.J., Schmechel D.E., Gaskell P.C. Jr., Rimmler J.B., Locke P.A., Conneally P.M., Schmader K.E. et al. 1994. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genet. 7: 180–184.

    Google Scholar 

  • Damerval C., Maurice A., Josse J.M. and de Vienne D. 1994. Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137: 289–301.

    Google Scholar 

  • Deng C. and Davis T.M. 1999. Linkage relationship among anthocyanin biosynthesis genes and the c gene for yellow fruit color in Fragaria vesca (diploid strawberry). In: Heller SR (ed) International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego, CA.

  • Deng Z., Huang S., Ling P., Chen C., Yu C., Weber C.A., Moore G.A. and Gmitter F.G. 1999. Identification of DNA sequences for tagging disease resistance genes in Poncirus. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego, CA.

  • de Vienne D., Damerval C., Leonardi A., Bost B., Piégu B., Dillmann C. and Zivy M. 1998. Genetics of the maize proteome. In: Proceedings 22nd Genetic Symposium ‘Genomes’, University of Missoury, Columbia.

  • de Vienne D. 1999. La génomique pour l'étude des gènes contrôlant la variation des caractères d'intérêt agronomique. Oléagineux Corps Gras Lipides 6: 143–148.

    Google Scholar 

  • de Vienne D., Leonardi A., Damerval C. and Zivy M. 1999. Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J. Exp. Bot. 50: 303–309.

    Google Scholar 

  • Dickerman A.W., Pecherer R.M., Young N.D., Stamper D.E. and Sobral B.W. 1999. Plant disease-resistance gene database. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego, CA.

  • Dixon M.S., Hatzixanthis K., Jones D.A., Harrison K. and Jones J.D.G. 1998. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10: 1915–1926.

    Google Scholar 

  • Doebley J. and Stec A. 1991. Genetic analysis of the morphological differences between maize and teosinte. Genetics 129: 285–295.

    Google Scholar 

  • Doebley J. and Stec A. 1993. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134: 559–570.

    Google Scholar 

  • Doebley J., Stec A. and Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386: 485–488.

    Google Scholar 

  • Dupuis J. and Siegmund D. 1999. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151: 373–386.

    Google Scholar 

  • Elliot K.J., Butler W.O., Dikenson C.D., Konno Y., Vedvick T.S., Fitzmaurice L. and Mirkov T.E. 1993. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol. Biol. 21: 515–524.

    Google Scholar 

  • Etienne C., Rothan C., Moing A., Svanella L., Dirlewanger E., Just D. and Monet R. 1999. Isolation of peach (Prunus persica L. Batsch) cDNAs expressed during fruit development. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego CA.

  • Faris J.D., Li W., Gill B.S., Liu D. and Chen P. 1999. Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet. 98: 219–225.

    Google Scholar 

  • Ferreira M.E., Rimmer S.R., Williams P.H. and Osborn T.C. 1995. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85: 213–217.

    Google Scholar 

  • Fire A. 1999. RNA-triggered gene silencing. Trends Genet. 15: 358–363.

    Google Scholar 

  • Fourmann M., Barret P., Renard M., Pelletier G., Delourme R. and Brunel D. 1998 The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor. Appl. Genet. 96: 852–858.

    Google Scholar 

  • Frary A., Nesbitt TC., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K.B. and Tanksley S.D. 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88.

    Google Scholar 

  • Fridman E., Pleban T. and Zamir D. 2000. A recombinant hotspot delimits a wild QTL for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA 97: 4718–4723.

    Google Scholar 

  • Fujii J., Otsu K., Zorzato F., De Leon S., Khanna V.K., Weiler J.E., O'Brien P.J. and MacLennan D.H. 1991. Identification of a mutation in the porcine ryanodine receptor associated with malignant hyperthermia. Science 253: 448–451.

    Google Scholar 

  • Fujioka S., Yamane H., Spray C.R., Gaskin P., MacMillan J., Phinney B.O. and Takahashi N. 1988. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3 and dwarf-5 seedlings of zea mays L. Plant Physiol. 88: 1367–1372.

    Google Scholar 

  • Gale M.D. and Devos K.M. 1998. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95: 1971–1974.

    Google Scholar 

  • Gebhardt C. 1997. Plant genes for pathogen resistance - variation on a theme. Trends Plant Sci. 2: 243–244.

    Google Scholar 

  • Geffroy V., Sévignac M., de Oliveira J., Fouilloux G., Skroch P., Thoquet P., Gepts P., Langin T. and Dron M. 2000. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol. Plant-Microbe Interact. 13: 287–296.

    Google Scholar 

  • Geffroy V., Sicard D., de Oliveira J., Sévignac M., Cohen S., Gepts P., Neema C., Langin T. and Dron M. 1999a. Identification of an ancestral gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol. Plant-Microbe Interact. 12: 774–784.

    Google Scholar 

  • Geffroy V., Ferrier-Cana E., Creusot F., Macadré C., de Oliveira J., Sévignac M., Sicard D., Neema C., Gepts P. and Langin T. 1999b Molecular analysis of a resistance gene cluster in two representative genotypes of the major gene pools of Phaseolus vulgaris. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego, CA.

  • Gentzbittel L., Mouzeyar S., Badaoui S., Mestries E., Vear F., Tourvieille de Labrouhe D. and Nicolas P. 1998. Cloning of markers for disease resistance in sunflower, Helianthus annuus L.. Theor. Appl. Genet. 96: 519–525.

    Google Scholar 

  • Gepts P. 1993. The use of molecular and biochemical markers in crop evolution studies. Evol. Biol. 27: 51–94.

    Google Scholar 

  • Gerhold D., Rushmore T. and Caskey C.T. 1999. DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24: 168–173.

    Google Scholar 

  • Giese H., Holm-Jensen A.G., Jensen H.P. and Jensen J. 1993. Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theor. Appl. Genet. 85: 897–900.

    Google Scholar 

  • Giovanonni J. 2000. Tools for tomato genome analysis: application for isolation of fruit ripening loci and expression profiling. In: Heller S.R. (ed.) International Conference on the Status of Plant and Animal Genome Research VIII. Abstracts. San Diego, CA.

  • Goldman I.L., Rocheford T.R. and Dudley J.W. 1993. Quantitative trait loci influencing protein and starch concentration in the Illinois Long Term Selection maize strains. Theor. Appl. Genet. 87: 217–224.

    Google Scholar 

  • Graham M.A. 1999. Expression, organization and evolution of resistance gene analogs. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego, CA.

  • Grube R.C., Radwanski E.R. and Jahn M. 2000. Comparative genetics of disease resistance within the Solanaceae. Genetics 155: 873–887.

    Google Scholar 

  • Hadas R., Schaffer A., Miron D., Fogelman M. and Granot D. PCRgenerated molecular markers for the invertase gene and sucrose accumulation in tomato. Theor. Appl. Genet. 90: 1142–1148.

  • Hämäläinen J.H., Sorri V.A., Watanabe K.N., Gebhardt C. and Valkonen J.P.T. 1998. Molecular examination of a chromosome region that controls resistance to potato Y and A potyviruses in potato. Theor. Appl. Genet. 96: 1036–1043.

    Google Scholar 

  • Hammond-Kosack K.E. and Jones J.D.G. 1996. Resistant genedependent plant defense response. Plant Cell 8: 1773–1791.

    Google Scholar 

  • Hammond-Kosack K.E. and Jones J.D.G. 1997. Plant disease resistance genes. Annu Rev. Plant Physiol. Plant Mol. Biol. 48: 575–607.

    Google Scholar 

  • Han F., Kilian J.P., Chen D., Kudrna B., Steffenson K., Yamamoto T., Matsumoto T., Sasaki T. and Kleinhofs A. 1999. Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42: 1071–1076.

    Google Scholar 

  • Hilbert P., Lindpaintner K., Beckmann J.S., Serikawa T., Soubrier F., Dubay C., Cartwright P., de Gouyon B., Julier C., Takahasi S., Vincent M., Ganten D., Georges M. and Lathrop G.M. 1991. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypersensitive rats. Nature 353: 521–529.

    Google Scholar 

  • Höfte H., Desprez T., Amselem J., Chiapello H., Caboche M., Moisan A., Jourjon M.-F., Charpenteau J.-L., Berthomieu P., Guerrier D., Giraudat J., Quigley F., Thomas F., Yu D-Y., Mache R., Raynal M., Cooke R., Grellet F., Delseny M., Parmentier Y., de Marcillac G., Gigot C., Fleck J., Philipps G., Axelos M., Bardet C., Tremousaygue D. and Lescure B. 1993. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J. 4: 1051–1061.

    Google Scholar 

  • Ismail A.M., Hall A.E. and Close T.J. 1999. Allelic variation of a dehydrin gene co-segregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. USA 96: 13566–13570.

    Google Scholar 

  • Jeunemaître X., Soubrier F., Kotelevtsev Y.V., Lifton R.P., Williams C.S., Charru A., Hunt S., Hopkins P.N., Williams R.R., Lalouel J.-M. and Corvol P. 1992. Molecular basis of human hypertension: role of angiotensinogen. Cell 71: 169–180.

    Google Scholar 

  • Johnson W.C., Menéndez C., Nodari R., Koinange E.M.K., Magnusson S., Singh S.P. and Gepts P. Association of a seed weight factor with the phaseolin seed storage protein locus across genotypes, environments, and genomes in Phaseolus-Vigna spp.: Sax (1923) revisited. Quant. Trait Loci 2: 000–000.

    Google Scholar 

  • Jourdren C., Barret P., Brunel D., Delourme R. and Renard M. 1996. Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor. Appl. Genet. 93: 512–518.

    Google Scholar 

  • Kanazin V., Marek L. and Shoemaker R.C. 1996. Resistance gene analogs are conserved and clustered in soybean. Proc. Natl. Acad. Sci. USA 93: 11746–11750.

    Google Scholar 

  • Keith C.S., Hoang D.O., Barrett B., Feigelman B., Nelson M.C., Thai H. and Baysdorfer C. 1993. Partial sequence analysis of 130 randomly selected maize cDNA clones. Plant Physiol. 101: 329–332.

    Google Scholar 

  • Kerem B.-S., Rommens J.M., Buchanan J.A., Markiewicz D., Cox T.K., Chakravarti A., Buchwald M. and Tsui L.-C., 1989. Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073–1080.

    Google Scholar 

  • Kianian S.F., Egli M.A., Phillips R.L., Rines H.W., Somers D.A., Gengenbach B.G., Webster F.H., Livingston S.M., Groh S., O'Donoughue L.S., Sorrells M.E., Wesenberg D.M., Stuthman D.D. and Fulcher R.G. 1999. Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat. Theor. Appl. Genet. 98: 884–894. (1999).

    Google Scholar 

  • Klann E.M., Chetelat R.T. and Bennett A.B. 1993. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol. 103: 863–870.

    Google Scholar 

  • Koornneef M., Alonso-Blanco C., Peeters A.J.M. and Soppe W. 1998. Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol 49: 345–370.

    Google Scholar 

  • Kurata N., Nagamura Y., Yamamoto K., Harushima Y., Sue N., Wu J., Antonio B.A., Shomura A., Shimizu T., Lin S.-Y., Inoue T., Fukuda A., Shimano T., Kuboki Y., Toyama T., Miyamoto Y., Kirihara T., Hayasaka K., Miyao A., Monna L., Zhong H.S., Tamura Y., Wang Z.-X., Momma T., Umehara Y., Yano M., Sasaki T. and Minobe Y. 1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet. 8: 365–372.

    Google Scholar 

  • Lagercrantz U. and Lydiate D.J. 1996. Comparative genome mapping in Brassica. Genetics 144: 1903–1910.

    Google Scholar 

  • Lagercrantz U., Putterill J., Coupland G. and Lydiate D. 1996. Comparative mapping in Arabidopsis and Brassica, fine-scale genome collinearity and congruence of genes controlling flowering time. Plant J. 9: 13–20.

    Google Scholar 

  • Lamb C.J., Lawton M.A., Dron M. and Dixon R.A. 1989. Signals and transduction mechanisms for activation of plant defense against microbial attack. Cell 56: 215–224.

    Google Scholar 

  • Lander E.S. and Schork N.J. 1994. Genetic dissection of complex traits. Science 265: 2037–2048.

    Google Scholar 

  • Lee M. 1997. A new mapping population for high resolution genetic mapping in maize. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research V. Abstracts. San Diego, CA.

  • Lefebvre V. and Chèvre A.-M. 1995. Tools for marking plant disease and pest resistance genes: a review. Agronomie 15: 3–19.

    Google Scholar 

  • Lefebvre V., Kuntz M., Camara B. and Palloix A. 1998. The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol. Biol. 36: 785–789.

    Google Scholar 

  • Leister D., Ballvora A., Salamini F. and Gebhardt C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genet. 14: 421–429.

    Google Scholar 

  • Leister D., Kurth J., Laurie D.A., Yano M., Sasaki T., Devos K., Graner A. and Schulze-Lefert P. 1998. Rapid reorganization of resistance gene homologues in cereal genomes. Proc. Natl. Acad. Sci. USA 95: 370–375.

    Google Scholar 

  • Leonards-Schippers C., Gieffers W., Schafer-Pregl R., Ritter E., Knapp S.J., Salamini F. and Gebhardt C. 1994. Quantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137: 67–77.

    Google Scholar 

  • Lester D.R., Ross J.J., Davies P.J. and Reid J.B. 1997. Mendel's stem length gene (Le) encodes a gibberellin 3-β-hydroxylase. Plant Cell 9: 1435–1443.

    Google Scholar 

  • Liu H.-C., Sofer L., Burnside J. and Cheng H.H. 2000. Identification of positional candidate genes for QTL through DNA microarrays and genetic mapping. In: Heller S.R. (ed.) International Conference on the Status of Plant and Animal Genome Research VIII. Abstracts. San Diego CA.

  • Livingstone K.D., Lackney V.K., Blauth J.R., van Wijk R. and Kyle Jahn M. 1999. Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152: 1183–1202.

    Google Scholar 

  • Marek L.F. and Shoemaker R.C. 1997. BAC contig development by fingerprint analysis in soybean. Genome 40: 420–427.

    Google Scholar 

  • Marra M.A., Hillier L. and Waterson R.H. 1998. Expressedsequence tags: ESTablishing bridges between genomes. Trends Genet 14: 4–7.

    Google Scholar 

  • Marshall A. and Hodgson J. 1998. DNA chips: an array of possibilities. Nature Biotechnol. 16: 27–31.

    Google Scholar 

  • Martin D.N., Proebsting W.M. and Hedden P. 1997. Mendel's dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proc. Natl. Acad. Sci. USA 94: 8907–8911.

    Google Scholar 

  • Mazeyrat F., Mouzeyar S., Nicolas P., Tourvieille de Labrouhe D. and Ledoigt G. 1998. Cloning, sequence and characterization of a sunflower (Helianthus annuus L.) pathogen-induced gene showing sequence homology with auxin-induced genes from plants. Plant Mol. Biol. 38: 899–903.

    Google Scholar 

  • McDowell J.M., Dhandaydham M., Long T.A., Aarts M.G.M., Goff S., Holub E.B. and Dangl J.L. 1998. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10: 1861–1874.

    Google Scholar 

  • Mengiste T. and Paszkowski J. 1999. Prospects for the precise engineering of plant genomes by homologous recombination. Biol. Chem. 380: 749–758.

    Google Scholar 

  • Meyers B.C. 1999. Cloning and characterization of Dm3 and related sequences from lettuce. In: Heller S.R. (ed.) International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego, CA.

  • Meyers B.C., Chin D.B., Shen K.A., Sivaramakrishnan S., Lavelle D.O., Zhang Z. and Michelmore R. 1998a. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10: 1817–1832.

    Google Scholar 

  • Meyers B.C., Shen K.A., Rohani P., Gaut B. and Michelmore R.W. 1998b. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10: 1833–1846.

    Google Scholar 

  • Michelmore R.W. 1995. Molecular approaches to manipulation of disease resistance genes. Annu. Rev. Phytopathol. 15: 393–427.

    Google Scholar 

  • Mitchell-Olds T. and Pederson D. 1998. The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics 149: 739–747.

    Google Scholar 

  • Nelson R., Ghislain M., Chittoor J. and Leach J.E. 1999. Candidate genes for disease resistance. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VII. Abstracts. San Diego, CA.

  • Nodari R.O., Tsai S.M., Guzman P., Gilbertson R.L. and Gepts P. 1993. Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134: 341–350.

    Google Scholar 

  • Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D. and Fluhr R. 1997. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucinerich repeat superfamily of plant resistance genes. Plant Cell 9: 521–532.

    Google Scholar 

  • Pan Q., Liu Y.-S., Budai-Hadrian O., Sela M., Carmel-Goren L., Zamir D. and Fluhr R. 2000. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155: 309–322.

    Google Scholar 

  • Paterson A.H., de Verna J.W., Lanini B. and Tanksley S.D. 1990. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecific cross of tomato. Genetics 124: 735–742.

    Google Scholar 

  • Pelleschi S., Guy S., Kim J.-Y., Pointe C., Mahé A., Barthes L., Leonardi A. and Prioul J.-L. 1999. Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress. Plant Mol. Biol. 39: 373–380.

    Google Scholar 

  • Pflieger S., Lefebvre V., Caranta C., Blattes A., Goffinet B. and Palloix A. 1999. Disease resistance gene analogs as candidates for QTLs involved in pepper/pathogen interactions. Genome 42: 1100–1110.

    Google Scholar 

  • Pflieger S., Palloix A., Caranta C., Blattes A. and Lefebvre V. in press. Defense response genes co-segregate with quantitative disease resistance Poci in pepper. Theor. Appl. Genet.

  • Pilet M.-L. 1999. Analyse génétique de la résistance du colza à la nécrose du collet et à la cylindrosporiose à l'aide des marqueurs moléculaires. Ph-D Thesis of Institut National Agronomique Paris-Grignon, France, 182 pp.

    Google Scholar 

  • Pnueli L., Carmel-Goren L., Hareven D., Gutfinger T., Alvarez J., Ganal M., Zamir D. and Lifschitz E. 1998. The self-pruning gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125. 1979–1989.

    Google Scholar 

  • Prioul J.-L., Pelleschi S., Sene M., Thévenot C., Causse M., de Vienne D. and Leonardi A. 1999. From QTL for enzyme activity to candidate gene. J. Exp. Bot. 50: 1281–1288.

    Google Scholar 

  • Putterill J., Robson F., Lee K., Simon R. and Coupland G. 1995. The constans gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857.

    Google Scholar 

  • Ramsay G. 1998. DNA chips: state-of-the-art. Nature Biotechnol. 16: 40–44.

    Google Scholar 

  • Riordan J.R., Rommens J.M., Kerem B.-S., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plasvic N., Chou J.-L., Drumm M.L., Iannuzzi M.C., Collins F.S. and Tsui L.-C. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066–1073.

    Google Scholar 

  • Rivkin M.I., Vallejos C.E. and McClean P.E. 1999. Diseaseresistance related sequences in common bean. Genome 42: 41–47.

    Google Scholar 

  • Robertson D.S. 1985. A possible technique for isolating genic DNA for quantitative traits in plants. J. Theor. Biol. 117: 1–10.

    Google Scholar 

  • Robertson D.S. 1989. Understanding the relationship between qualitative and quantitative genetics. In: Helentjaris T. and Burr B. (eds.), Development and application of molecular markers to problems in plant genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 81–87.

    Google Scholar 

  • Rommens J.M., Iannuzzi M.C., Kerem B.-S., Drumm M.L., Melmer G., Dean M., Rozmahel R., Cole J.L., Kennedy D., Hidaka N., Zsiga M., Buchwald M., Riordan J.R., Tsui L.-C. and Collins F.S. 1989. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059–1065.

    Google Scholar 

  • Rothschild M.F. and Soller M. 1997. Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8: 13–20.

    Google Scholar 

  • Sato T., Iwatsubo T., Takahashi M., Nakagawa H., Ogura N. and Mori H. 1993. Intercellular localization of acid invertase in tomato fruit and molecular cloning of a cDNA for the enzyme. Plant. Cell Physiol. 34: 263–269.

    Google Scholar 

  • Schaffer A.A., Levin I., Oguz I., Petreikov M., Cincarevsky F., Yeselson Y, Shen S., Gilboa N. and Bar M. 2000. ADP glucose pyrophosphorylase activity and starch accumulation in immature tomato fruit: the effect of a Lycopensicon hirsutum-derived introgression encoding for the large subunit. Plant Science 152: 135–144.

    Google Scholar 

  • Schunkert H. 1997. Polymorphism of the angiotensin-converting enzyme gene and cardiovascular disease. J. Mol. Med. 75: 867–875.

    Google Scholar 

  • Shen K.A., Meyers B.C., Islam-Faridi M.N., Chin D.B., Stelly D.M. and Michelmore R.W. 1998. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol. Plant-Microbe Interact. 11: 815–823.

    Google Scholar 

  • Sillito D., Parkin I.A., Mayerhofer R., Lydiate D.J. and Good A.G. 2000. Arabidopsis thaliana: a source of candidate diseaseresistance genes for Brassica napus. Genome 43: 452–460.

    Google Scholar 

  • Speulman E., Bouchez D., Holub E.B. and Beynon J.L. 1998. Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J. 14: 467–474.

    Google Scholar 

  • Staskawicz B.J., Ausubel F.M., Baker B.J., Ellis J.G. and Jones J.D.G. 1995. Molecular genetics of plant disease resistance. Science 268: 661–667.

    Google Scholar 

  • Tanksley S.D., Ganal M.W. and Martin G.B. 1995. Chromosomal landing: a paradigm for map-based cloning in plants with large genomes. Trends Genet. 11: 63–68.

    Google Scholar 

  • Templeton A.R., Boerwinkle E. and Sing C.F. 1987. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117: 343–351.

    Google Scholar 

  • Touzet P., Winkler R.G. and Helentjaris T. 1995. Combined genetic and physiological analysis of a locus contributing to quantitative variation. Theor. Appl. Genet. 91: 200–205.

    Google Scholar 

  • Turner J., Johnson M. and Eanes W. 1979. Contrasted modes of evolution in the same genome: allozymes and adaptative change in Helioconius. Proc. Natl. Acad. Sci. USA 76: 1924–1928.

    Google Scholar 

  • Vallad G., Rivkin M.I., Vallejos E. and McClean P. 1998. Cloning of Pto-like sequences in common bean. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VI. Abstracts. San Diego, CA.

  • van Bockxmeer F.M., Mamotte C.D., Gibbons F.R. and Taylor R.R. 1994. Apolipoprotein epsilon 4 homozygosity: a determinant of restenosis after coronary angioplasty. Atherosclerosis 110: 195–202.

    Google Scholar 

  • Wallace B. 1963. Genetic diversity, genetic uniformity and heterosis. Canad. J. Genet. Cytol. 5: 239–253.

    Google Scholar 

  • Wang Y., Rea T., Bian J., Gray S. and Sun Y. 1999a. Identification of the genes responsive to etoposide-induced apoptosis: application of DNA chip technology. FEBS Lett. 445: 269–273.

    Google Scholar 

  • Wang K., Gan L., Jeffery E., Gayle M., Gown A.M., Skelly M., Nelson P.S., Ng W.V., Schummer M., Hood L. and Mulligan J. 1999b. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene 229: 101–108.

    Google Scholar 

  • Wei F., Gobelman-Werner K., Morroll S.M., Kurth J., Mao R., Wing D., Leister D., Schulze-Lefert P. and Wise R.P. 1999. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153: 1929–1948.

    Google Scholar 

  • Woo S.-S., Sicard D., Arroyo-Garcia R., Ochoa O., Nevo E., Korol A., Fahima T. and Michelmore R.W. 1998. Many diverged resistance genes of ancient origin exist in lettuce. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VI. Abstracts. San Diego, CA.

  • Young N.D. 1996. QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopath. 34: 479–501.

    Google Scholar 

  • Yu Y.G., Buss G.R. and Saghai Maroof M.A. 1996. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl. Acad. Sci. USA 93: 11751–11756.

    Google Scholar 

  • Zivy M., Gazeau P., Riccardi F. and de Vienne D. 1996. Identification and genetic control of proteins induced by drought in maize. In: Heller S.R. (ed.) International Conference on the Status of Plant and Animal Genome Research IV. Abstracts. San Diego, CA.

  • Zivy M., Leonardi A., Hoefer M., Westhoff P., Prioul J.-L., Foueillassar X. and de Vienne D. 1998. Genetic approach of molecular and physiological responses of maize to drought: towards QTL characterization. In: Heller S.R. (ed.), International Conference on the Status of Plant and Animal Genome Research VI. Abstracts. San Diego, CA.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pflieger, S., Lefebvre, V. & Causse, M. The candidate gene approach in plant genetics: a review. Molecular Breeding 7, 275–291 (2001). https://doi.org/10.1023/A:1011605013259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011605013259

Navigation