Skip to main content
Log in

Thermogravimetric Study of Template Remotion of Niobium Aluminophosphate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Niobium-aluminophosphate materials with AEL structure (NbALPO-11) were synthesized by the hydrothermal method at 170°C for a period of 72 h. The chemical composition of the gel was: DIPA:Al2O3:(1–x)P2O5:xNb2O5:80H2O, where x=0.025, 0.050 and 0.100(DIPA=di-isopropylamine template). The obtained materials were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, scanning electron microscopy and thermogravimetry. From TG, was observed that the remotion of the template occluded in the porous of the NbALPO-11 materials, occurred in two steps, the first in the temperature range from 180 to 260°C, due to physically adsorbed DIPA molecules, and the second step, from300 to 410°C, attributed to the DIPA decomposition to propene and ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Wilson, B. M. Lok, C. A. Messina, R. T. Gajek, R. L. Patton and E. M. Flanigen, J. Am. Chem. Soc., 104 (1982) 1146.

    Article  CAS  Google Scholar 

  2. S. T. Wilson, B. M. Lok, C. A. Messina, R. T. Gajek, R. L. Patton and E. M. Flanigen, Am. Chem. Soc. Symp. Ser., 218 (1983) 79.

    CAS  Google Scholar 

  3. S. T. Wilson, B. M. Lok, C. A. Messina and E. M. Flanigen, in D. Olson and A. Bisio (Eds), Proc. of the 6th Int. Zeolite Conference, UK, Butterworth 1983, p. 97.

  4. W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th edition, Elsevier, New York 1996.

    Google Scholar 

  5. P. S. Singh, R. Bandyopadhyay, R. S. Shaikh and B. S. Rao, Stud. Surf. Sci. Catal., 97 (1995) 343.

    Article  CAS  Google Scholar 

  6. R. Szostak, Molecular Sieves: Principles of Synthesis and Identification, van Nostrand Reinhold, New York 1989, p. 79.

    Google Scholar 

  7. M. Soulard, S. Bilger, H. Kessler and J. L. Guth, Zeolites, 7 (1987) 463.

    Article  CAS  Google Scholar 

  8. A. S. Araujo, J. C. Diniz, A. O. S. Silva and R. A. A. Melo, J. Alloys Comp., 250 (1997) 532.

    Article  Google Scholar 

  9. M. M. J. Treacy, J. B. Higgins and R. von Ballmoos, Collection of Simulated XRD Powder Patterns for Zeolites, 3th edition, Elsevier, New York 1996.

    Google Scholar 

  10. A. S. Araujo, V. J. Fernandes Jr., A. O. S. Silva and J. C. Diniz, J. Therm. Anal. Cal., 56 (1999) 151.

    Article  CAS  Google Scholar 

  11. A. I. Biaglow, A. T. Adamo, G. T. Kokotailo and R. J. Gorte, J. Catal., 131 (1991) 252.

    Article  CAS  Google Scholar 

  12. D. J. Parrillo, C. Pereira, G. T. Kokotailo and R. J. Gorte, J. Catal., 138 (1992) 377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.O.S., Fernandes, V.J. & Araujo, A.S. Thermogravimetric Study of Template Remotion of Niobium Aluminophosphate. Journal of Thermal Analysis and Calorimetry 64, 1147–1152 (2001). https://doi.org/10.1023/A:1011588812387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011588812387

Navigation