Skip to main content
Log in

Analysis of Approximate Inverses in Tomography II. Iterative Inverses

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper continues the analysis of approximate inverses from Part I by concentrating on iterative inverses in linear tomographic applications. The importance of differentiating between the ideal resolution of the operator/matrix to be inverted and the actual or effective resolution obtained by the approximate inverse during an iterative procedure is stressed. Means of obtaining the effective resolution operator for standard iterative procedures such as conjugate gradients, Lanczos, and LSQR are provided, while circumventing the usual need to produce a singular-value decomposition of the operator being inverted. The methods discussed produce very simple results in calculations with infinite precision, but require reorthogonalization of the Krylov vectors/operators produced by the iterative procedures in finite precision. Although this need for reorthogonalization increases the expense of the procedure somewhat, it still produces the desired results much more efficiently than what could be obtained using a full singular-value decomposition of the operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • W. E. Arnoldi, “The principle of minimized iterations in the solution of the matrix eigenvalue problem,” Quart. Appl. Math. vol. 9, pp. 17-29, 1951.

    Article  MathSciNet  Google Scholar 

  • S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, “A taxonomy for conjugate gradient methods,” SIAM J. Numer. Anal. vol. 27, pp. 1542-1568, 1990.

    Article  MathSciNet  Google Scholar 

  • J. G. Berryman, “Stable iterative reconstruction algorithm for nonlinear travel-time tomography,” Inverse Problems vol. 6, pp. 21-42, 1990.

    Article  MathSciNet  Google Scholar 

  • J. G. Berryman, “Resolution of iterative inverses in seismic tomography,” in Proceedings of the Cornelius Lanczos International Centenary Conference, J. D. Brown, M. T. Chu, D. C. Ellison, and R. J. Plemmons, eds., North Carolina State University, Raleigh, NC, Dec. 12-17, 1993 (SIAM: Philadelphia, PA), pp. 297-299, 1994a.

    Google Scholar 

  • J. G. Berryman, “Tomographic resolution without singular value decomposition,” in Mathematical Methods in Geophysical Imaging II, S. Hassanzadeh, ed., Proceedings of SPIE, vol. 2301, July 24-29, 1994, San Diego, CA (SPIE: Bellingham, Washington), pp. 2-13, 1994b.

    Chapter  Google Scholar 

  • J. G. Berryman, “Analysis of approximate inverses in tomography. I. Resolution analysis of common inverses,” Optimization and Engineering vol. 1, pp. 87-115, 2000.

    Article  MathSciNet  Google Scholar 

  • J. G. Berryman, and S. Fomel, “Iterative methods of optimization with application to crosswell tomography,” Stanford Exploration Project vol. SEP-93, pp. 109-132, 1996.

    Google Scholar 

  • J. G. Berryman, and M. A. Saunders, in preparation.

  • A. Björck, and T. Elfving, “Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations,” BIT vol. 19, pp. 145-163, 1979.

    Article  MathSciNet  Google Scholar 

  • J. E. Craig, “The N-step iteration procedures,” J. Math. and Phys. vol. 34, pp. 64-73, 1955.

    Article  MathSciNet  Google Scholar 

  • K. A. Dines and R. J. Lytle, “Computerized geophysical tomography,” Proc. IEEE vol. 67, pp. 1065-1073, 1979.

    Article  Google Scholar 

  • J. R. Evans and U. Achauer, “Teleseismic velocity tomography using the ACH method: Theory and application to continental-scale studies,” in Seismic Tomography: Theory and Practice, H. M. Iyer and K. Hirahara, eds., Chapman and Hall: London, pp. 319-360, 1993.

    Google Scholar 

  • R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Computer Journal vol. 7, pp. 149-154, 1964.

    Article  MathSciNet  Google Scholar 

  • S. Fomel, “Least-square inversion with inexact adjoints, method of conjugate direction: a tutorial,” Stanford Exploration Project, vol. SEP-92, pp. 253-265, 1996.

    Google Scholar 

  • P. Gilbert, “Iterative methods for the three-dimensional reconstruction of an object from projections,” J. Theor. Biol. vol. 36, pp. 105-117, 1972.

    Article  Google Scholar 

  • G. R. Goldstein and J. A. Goldstein, “The best generalized inverse,” J. Math. Anal. Appl. vol. 252, pp. 91-101, 2000.

    Article  MathSciNet  Google Scholar 

  • G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a matrix,” SIAM J. Numer. Anal. vol. 2, pp. 205-224, 1965.

    MathSciNet  MATH  Google Scholar 

  • G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press: Baltimore, p. 341, 1989.

    MATH  Google Scholar 

  • A. Greenbaum and Z. Strakos, “Predicting the behavior of finite precision Lanczos and conjugate gradient computations,” SIAM J. Matrix Anal. vol. 13, pp. 121-137, 1992.

    Article  MathSciNet  Google Scholar 

  • M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Nat. Bur. Stan. vol. B 49, pp. 409-436, 1952.

    Article  MathSciNet  Google Scholar 

  • S. Ivansson, “Remark on an earlier iterative tomographic algorithm,” Geophys. J. R. Astr. Soc. vol. 75, pp. 855-860, 1983.

    Article  Google Scholar 

  • C. Lanczos, “An iterative method for the solution of the eigenvalue problem of linear differential and integral operators,” J. Res. Nat. Bur. Stand. vol. 45, pp. 255-282, 1950.

    Article  Google Scholar 

  • D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley: Reading Massachusetts, Ch. 7 and 8, pp. 148-155, 168-186, 1973.

    MATH  Google Scholar 

  • S. E. Minkoff, “A computationally feasible approximate resolution matrix for seismic inverse problems,” Geophys. J. Int. vol. 126, pp. 345-359, 1996.

    Article  Google Scholar 

  • C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,” ACM Trans. Math. Softw. vol. 8, pp. 43-71, 1982.

    Article  MathSciNet  Google Scholar 

  • M. A. Saunders, “Solution of sparse rectangular systems using LSQR and Craig,” BIT vol. 35, pp. 588-604, 1995.

    Article  MathSciNet  Google Scholar 

  • M. A. Saunders, “Computing projections with LSQR,” BIT vol. 37, pp. 96-104, 1997.

    Article  MathSciNet  Google Scholar 

  • A. van der Sluis and H. A. van der Vorst, “Numerical solution of large, sparse linear algebraic systems arising from tomographic problems,” in Seismic Tomogrpahy-With Applications in Global Seismology and Exploration Geophysics, G. Nolet, ed., Reidel: Dordrecht, Holland, Ch. 3, pp. 49-83, 1987.

    Google Scholar 

  • A. van der Sluis and H. A. van der Vorst, “SIRT-and CG-type methods for the iterative solution of sparse linear least-squares problems,” Linear Algebra Appl. vol. 130, pp. 257-302, 1990.

    Article  MathSciNet  Google Scholar 

  • R. S. Varga, Matrix Iterative Analysis, Prentice-Hall: Englewood, Cliffs, NJ, pp. 16, 17, 141, 159, 1962.

    Google Scholar 

  • D. W. Vasco, J. E. Peterson, Jr., and E. L. Majer, “Nonuniqueness in traveltime tomography: Ensemble inference and cluster analysis,” Geophysics vol. 61, pp. 1209-1227, 1996.

    Article  Google Scholar 

  • J. Zhang and G. A. McMechan, “Estimation of resolution and covariance for large matrix inversions,” Geophys. J. Int. vol. 121, pp. 409-426, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berryman, J.G. Analysis of Approximate Inverses in Tomography II. Iterative Inverses. Optimization and Engineering 1, 437–473 (2000). https://doi.org/10.1023/A:1011588308111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011588308111

Navigation