Skip to main content
Log in

Thermal Analysis by Electrical Resistivity Measurement

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis in the form of electrical resistivity measurement is reviewed. It is useful for studying phase transitions and electrical conduction mechanisms. The resistivity can be the volume resistivity or the contact resistivity, as illustrated for the case of continuous carbon fiber polymer-matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mijovic and T. C. Gsell, SAMPE Quarterly-Society for the Advancement of Materials and Process Engineering, 21 (1990) 42.

    Google Scholar 

  2. K. C. Cole, D. Noel, J.-J. Hechler, A. Chouliotis and K. C. Overbury, Polymer Composites, 10 (1989) 150.

    Google Scholar 

  3. W.-D. Emmerich and E. Kaisersberger, in Materials Science Monographs, Vol. 35, Elsevier, Amsterdam p. 289.

  4. W. J. Sichina and P. S. Gill, in Tech. Sessions of the 41st Annual Conf., - Reinforced Plastics/ Composites Institute, SPI, New York 1986, Sess. 24, 4 p.

    Google Scholar 

  5. J. N. Leckenby, D. C. Harget, W. J. Sichina and P. S. Gill, in Carbon Fibers: Technology, Uses and Prospects, Noyes Publ., Park Ridge, NJ, 1985, p. 86.

    Google Scholar 

  6. J. N. Leckenby, D. C. Harget, W. J. Sichina and P. S. Gill, in Carbon Fibers III, Plastics and Rubber Inst., London 1985, p. 111.

    Google Scholar 

  7. T. W. Johnson and C. L. Ryan, in Proc. 31st International SAMPE Symposium and Exhibition 1986: Materials Sciences for the Future, SAMPE, Azusa, CA, 1986, p. 1537.

    Google Scholar 

  8. D. Wong, J. Jankowsky, M. DiBerardino and R. Cochran, in Proc. 38th Int. SAMPE Symp. and Exhibition, SAMPE, Covina, CA, Part 2, 38 (1993) 1552.

    Google Scholar 

  9. K. E. Atkinson and C. Jones, J. Adhesion, 56 (1996) 247.

    Google Scholar 

  10. J. L. Jankowsky, D. G. Wong, M. F. DiBerardino and R. C. Cochran, in ASTM Special Technical Publication, No. 1249, Proc. Symp. on Assignment of the Glass Transition, ASTM, Philadelphia, PA, 1994, p. 277.

    Google Scholar 

  11. P. Olivier, J. P. Cottu and B. Ferret, Composites, 26 (1995) 509.

    Google Scholar 

  12. A. Licea-Claverie and F. J. U. Carrillo, Polymer Testing, 16 (1997) 445.

    Google Scholar 

  13. B. Harris, O. G. G raddell, D. P. Almond, C. Lefebvre and J. Verbist, J. Mater. Sci., 28 (1993) 3353.

    Google Scholar 

  14. M. Akay, J. G. Cracknell and H. A. Farnham, Polymers and Polymer Composites, 2 (1994) 317.

    Google Scholar 

  15. J. W. E. Gearing and M. R. Stone, Polymer Composites, 5 (1984) 312.

    Google Scholar 

  16. J. R. Sarasua and J. Pouyet, J. Thermplastic Composite Materials, 11 (1998) 2.

    Google Scholar 

  17. T. Fukuda, T. Kakeshita, T. Saburi, K. Kindo, T. Takeuchi, M. Honda and Y. Miyako, Physica B: Condensed Matter, 237-238 (1997) 609.

    Google Scholar 

  18. M. Kato, Y. Nishino, S. Asano and S. O'Hara, Nippon Kinzoku Gakkaishi/J. Japan Inst. of Metals, 62 (1998) 669.

    Google Scholar 

  19. N. Afify, A. Gaber, M. S. Mostafa and A. A. Hussein, J. Alloys and Compounds, 259 (1997) 135.

    Google Scholar 

  20. M. Bizjak and L. Kosec, Zeitschrift für Metallkunde, 91 (2000) 160.

    Google Scholar 

  21. P. Archambault and D. Godard, Scripta Materialia, 42 (2000) 675.

    Google Scholar 

  22. U. Schmidt, C. Eisenschmidt, T. Vieweger, C. Y. Zahra and A.-M. Zahra, J. Non-Crystalline Solids, 271 (2000) 29.

    Google Scholar 

  23. Y. S. Kwon and B. H. Min, Physica B: Condensed Matter, 281 (2000) 120.

    Google Scholar 

  24. M. Hedo, T. Nakama, A. T. Burkov, K. Yagasaki, Y. Uwatoko, H. Takahashi, T. Nakanishi and N. Mori, Physica B: Condensed Matter, 281 (2000) 88.

    Google Scholar 

  25. H. Kadomatsu, K. Kuwano, K. Umeo, Y. Itoh and T. Tokunaga, J. Magnetism and Magnetic Mater., 189 (1998) 341.

    Google Scholar 

  26. Y. Karaki, M. Kubota, H. Ishimoto and Y. Onuki, Physica B: Condensed Matter, 284 (2000) 1690.

    Google Scholar 

  27. R. Troc, V. Zaremba, M. Kuznietz and E. M. Levin, J. Alloys and Compounds, 297 (2000) 9.

    Google Scholar 

  28. E. M. Levin, V. K. Pecharsky, K. A. Gschneidner Jr. and P. Tomlinson, J. Magnetism and Magnetic Mater., 210 (2000) 181.

    Google Scholar 

  29. S. Rogge, A. W. Dunn, T. Melin, C. Dekker and L. J. Geerligs, Carbon, 38 (2000) 1647.

    Google Scholar 

  30. V. G. Orlov, A. A. Bush, S. A. Ivanov and V. V. Zhurov, J. Low Temp. Physics, 105 (1996) 1541.

    Google Scholar 

  31. S. Fujihara, G. Murakami and T. Kimura, J. Alloys and Compounds, 243 (1996) 70.

    Google Scholar 

  32. D. Lipp, A. Gladun, K. Bartkowski, A. Belger, P. Paufler and G. Behr, Physica B: Condensed Matter., 284 (2000) 1103.

    Google Scholar 

  33. M. M. Abdel-Kader, M. M. Mosaad, M. A. Fahim, K. K. Tahoon and Z.H. El-Tanahy, Phase Transitions, 62 (1997) 105.

    Google Scholar 

  34. Z. Mei and D. D. L. Chung, Polymer Composites, 21 (2000) 711.

    Google Scholar 

  35. Z. Mei and D. D. L. Chung, Polymer Composites, 19 (1998) 709.

    Google Scholar 

  36. J. A. Kuphal, L. H. Sperling and L. M. Robeson, J. Appl. Polym. Sci., 42 (1991) 1525.

    Google Scholar 

  37. A. L. Simal and A. R. Martin, J. Appl. Polym. Sci., 68 (1998) 453.

    Google Scholar 

  38. Ch. R. Davis, J. Appl. Polym. Sci., 62 (1996) 2237.

    Google Scholar 

  39. B. G. Risch and G. L. Wilkes, Polymer, 34 (1993) 2330.

    Google Scholar 

  40. H. J. Oswald, E. A. Turi, P. J. Harget and Y. P. Khanna, J. Macromol. Sci. Phys., B13 (1977) 231.

    Google Scholar 

  41. J. U. Otaigbe and W. G. Harland, J. Appl. Polym. Sci., 36 (1988) 165.

    Google Scholar 

  42. M. E. Brown in Introduction to Thermal Analysis: Techniques and Application, Chapman and Hall, New York 1988, p. 25.

    Google Scholar 

  43. C. H. Do, E. M. Pearce and B. J. Bulkin, J. Polym. Sci., Part A: Polym. Chem., 25 (1987) 2409.

    Google Scholar 

  44. M. C. Gupta and S. G. Viswanath, J. Thermal Anal., 47 (1996) 1081.

    Google Scholar 

  45. N. Avramova, Polym. and Polym. Comp., 1 (1993) 261.

    Google Scholar 

  46. A. L. Simal and A. R. Martin, J. Appl. Polym. Sci., 68 (1998) 441.

    Google Scholar 

  47. I. M. Fouda, M. M. El-Tonsy, F. M. Metawe, H. M. Hosny and K. H. Easawi, Polym. Testing, 17 (1998) 461.

    Google Scholar 

  48. I. M. Fouda, E. A. Seisa and K. A. El-Farahaty, Polym. Testing, 15 (1996) 3.

    Google Scholar 

  49. L. M. Yarisheva, L. Yu. Kabalínova, A. A. Pedy and A. L. Volynskii, J. Thermal Anal., 38 (1992) 1293.

    Google Scholar 

  50. Y. Nishino, Mater. Sci. and Eng. A: Structural Mater.: Properties, Microstructure and Processing,1-2 (1998) 50.

    Google Scholar 

  51. T. Ikeda, T. Miyashita, T. Hirai, M. Ikeda and S. Komatsu, Keikinzoku/J. Japan Inst. Light Metals, 49 (1999) 476.

    Google Scholar 

  52. J. Ivkov and N. Radic, Solid State Communications, 106 (1998) 273.

    Google Scholar 

  53. S. Nishigori, Y. Yamada, T. Ito, H. Abe and A. Matsushita, Phyica B: Condensed Matter, 281 (2000) 686.

    Google Scholar 

  54. J. Ederth, L. B. Kiss, G. A. Niklasson, C. G. Granqvist and E. Olsson, Mater. Res. Soc. Symp. Proc., 581 (2000) 541.

    Google Scholar 

  55. V. D. Das and P. G. Ganesan, Solid State Communications, 106 (1998) 315.

    Google Scholar 

  56. Z. Bendekovic, P. Biljanovic and D. Grgec, in Proc. 9th Mediterranean Electrotechnical Conf., MELECON, IEEE, Piscataway, N.J., 1 (1998) 362.

    Google Scholar 

  57. V. D. Das and P. G. Ganesan, in Proc. SPIE - The Int. Soc. Optical Eng., SPIE, Bellingham, WA, 3316 (1998) 1157.

    Google Scholar 

  58. S. Majumdar, M. M. Kumar, R. Mallik and E. V. Sampathkumaran, Solid State Communications, 110 (1999) 509.

    Google Scholar 

  59. N. Tateiwa, N. Kimura, T. Sakon, M. Motokawa, H. Aoki and T. Komatsubara, Physica B: Condensed Matter., 281 (2000) 254.

    Google Scholar 

  60. P. Boulet, F. Weitzer, K. Hiebl and H. Noel, Physica B: Condensed Matter., 292 (2000) 302.

    Google Scholar 

  61. R. Kurt, R. Sanjines and A. Karimi, Mater. Res. Soc. Symp. Proc., 593 (2000) 511.

    Google Scholar 

  62. W. S. Williams, Int. J. Refractory and Hard Metals, 17 (1999) 21.

    Google Scholar 

  63. H. Shiomi, M. Nakamura and K. Watanabe, J. Ceramic Soc. Japan, Int. Ed., 102 (1994) 288.

    Google Scholar 

  64. V. Chellappa, Z. W. Chiou and B. Z. Jang, J. Mater. Sci., 30 (1995) 4263.

    Google Scholar 

  65. V. Chellappa, L. Zhao and B. Z. Jang, in Proc. SPIE - The Int. Soc. Optical Eng., SPIE, Bellingham, WA, 2447 (1995) 68.

    Google Scholar 

  66. S. Wang and D. D. L. Chung, Composite Interfaces, 6 (1999) 497.

    Google Scholar 

  67. S. Wang and D. D. L. Chung, Composite Interfaces, 6 (1999) 507.

    Google Scholar 

  68. ASTM Standard, D 2344-84 (1995) 43.

  69. G. Zhou, E. R. Green and C. Morrison, Composites Sci. Tech., 55 (1995) 187.

    Google Scholar 

  70. S. L. Iyer, C. Sivaramakrishnan and C. Young, in Proc. of 34th International SAMPE Symp. and Exhibition, SAMPE. Covina, CA, 1989. Book 2, p. 2172.

    Google Scholar 

  71. X. Wang and D. D. L. Chung, Polymer Composites, 18 (1997) 692.

    Google Scholar 

  72. A. R. Blythe, in Electrical Properties of Polymers, Cambridge University Press, 1980.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, D.D.L. Thermal Analysis by Electrical Resistivity Measurement. Journal of Thermal Analysis and Calorimetry 65, 153–165 (2001). https://doi.org/10.1023/A:1011584803863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011584803863

Navigation