Skip to main content
Log in

A fast marching method for reservoir simulation

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a fast marching level set method for reservoir simulation based on a fractional flow formulation of two-phase, incompressible, immiscible flow in two or three space dimensions. The method uses a fast marching approach and is therefore considerably faster than conventional finite difference methods. The fast marching approach compares favorably with a front tracking method as regards both efficiency and accuracy. In addition, it maintains the advantage of being able to handle changing topologies of the front structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Adalsteinsson and J.A. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys. 118(2) (1995) 269-277.

    Article  MATH  MathSciNet  Google Scholar 

  2. T.D. Aslam, A level set algorithm for tracking discontinuities in hyperbolic conservation laws, I. Scalar equations, Preprint 28, UCLA Computational and Applied Mathematics (1998).

  3. K. Aziz and A. Settari, Petroleum Reservoir Simulation (Elsevier Applied Science Publishers, Essex, England, 1979).

    Google Scholar 

  4. F. Bratvedt, K. Bratvedt, C.F. Buchholz, L. Holden, R. Olufsen and N.H. Risebro, Three-dimensional reservoir simulation based on front tracking, in: North Sea Oil and Gas Reservoirs-III (Kluwer Academic, 1994) pp. 247-257.

  5. F. Bratvedt, K. Bratvedt, C.F. Buchholz, T. Gimse, H. Holden, L. Holden and N.H. Risebro. FRONTLINE and FRONTSIM: two full scale, two-phase, black oil reservoir simulators based on front tracking, Surveys Math. Indust. 3(3) (1993) 185-215.

    MATH  MathSciNet  Google Scholar 

  6. F. Bratvedt, T. Gimse and C. Tegnander, Streamline computations for porous media flow including gravity, Transport in Porous Media 25 (1996) 63-78.

    Article  Google Scholar 

  7. G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, Studies in Mathematics and Its Applications, Vol. 17 (North-Holland, Amsterdam, 1986).

    Google Scholar 

  8. Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33(3) (1991) 749-786.

    MATH  MathSciNet  Google Scholar 

  9. M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27(1) (1992) 1-67.

    MATH  MathSciNet  Google Scholar 

  10. M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277(1) (1983) 1-42.

    Article  MATH  MathSciNet  Google Scholar 

  11. C.M. Dafermos, Polygonal approximation of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1972) 33-41.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.S. Espedal and K.H. Karlsen, Numerical solution of reservoir flow models based on large time step operator splitting algorithms, in: Filtration in Porous Media and Industrial Applications, eds. A. Fasano and J.C. van Duijn, Lecture Notes in Mathematics (Springer, to appear).

  13. L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. 33(3) (1991) 635-681.

    MATH  MathSciNet  Google Scholar 

  14. S. Evje, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Front tracking and operator splitting for nonlinear degenerate convection-diffusion equations, in: Parallel Solution of Partial Differential Equations, eds. P. Bjørstad and M. Luskin, IMA Volumes in Mathematics and Its Applications, Vol. 120, (Springer, 2000) pp. 209-228.

  15. M. Falcone, T. Giorgi and P. Loretti, Level sets of viscosity solutions: Some applications to fronts and rendezvous problems, SIAM J. Appl. Math. 54(5) (1994) 1335-1354.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Haugse, K.H. Karlsen, K.-A. Lie and J. Natvig, Numerical solution of the polymer system by front tracking, Transport in Porous Media (to appear).

  17. H. Holden and L. Holden, On scalar conservation laws in one-dimension, in: Ideas and Methods in Mathematics and Physics, eds. S. Albeverio, J.E. Fenstad, H. Holden and T. Lindstrøm (Cambridge University Press, Cambridge, 1988) pp. 480-509.

    Google Scholar 

  18. H. Holden, L. Holden and R. Høegh-Krohn, A numerical method for first order nonlinear scalar conservation laws in one-dimension, Comput. Math. Appl. 15(6-8) (1988) 595-602.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Holden and N.H. Risebro, A method of fractional steps for scalar conservation laws without the CFL condition, Math. Comp. 60(201) (1993) 221-232.

    Article  MATH  MathSciNet  Google Scholar 

  20. M.J. King and A.D. Datta-Gupta, Streamline simulation: a current perspective, In Situ (special issue on reservoir simulation) 22(1) (1998) 91-140.

    Google Scholar 

  21. S.N. Kružkov, First order quasi-linear equations in several independent variables, Math. USSR-Sb. 10(2) (1970) 217-243.

    Article  Google Scholar 

  22. R.J. LeVeque, Numerical Methods for Conservation Laws, 2nd edition (Birkhäuser, Basel, 1992).

    Google Scholar 

  23. K.-A. Lie, A dimensional splitting method for quasilinear hyperbolic equations with variable coefficients, BIT 39(4) (1999) 683-700.

    Article  MATH  MathSciNet  Google Scholar 

  24. K.-A. Lie, V. Haugse and K.H. Karlsen, Dimensional splitting with front tracking and adaptive grid refinement, Numer. Methods Partial Differential Equations 14(5) (1998) 627-648.

    Article  MATH  MathSciNet  Google Scholar 

  25. K.W. Morton, Numerical Solution of Convection-Diffusion Problems (Chapman & Hall, London, 1996).

    Google Scholar 

  26. O. A. Ole\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{1} \)nik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. Ser. 2 26 (1963) 95-172.

    MathSciNet  Google Scholar 

  27. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79(1) (1988) 12-49.

    Article  MATH  MathSciNet  Google Scholar 

  28. D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation (Elsevier, 1977).

  29. J.A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad. Sci. U.S.A. 93(4) (1996) 1591-1595.

    Article  MATH  MathSciNet  Google Scholar 

  30. J.A. Sethian, Level Set Methods, Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  31. J.A. Sethian, Theory, algorithms, and applications of level set methods for propagating interfaces, in: Acta Numerica, 1996 (Cambridge Univ. Press, Cambridge, 1996) pp. 309-395.

    Google Scholar 

  32. P.E. Souganidis, Front propagation: theory and applications, in: Proc. of Conf. on Viscosity Solutions and Applications, Montecatini Terme, 1995 (Springer, Berlin, 1997) pp. 186-242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsen, K.H., Lie, KA. & Risebro, N. A fast marching method for reservoir simulation. Computational Geosciences 4, 185–206 (2000). https://doi.org/10.1023/A:1011564017218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011564017218

Navigation