Skip to main content
Log in

Dose-Response Envelope for Escherichia coli O157:H7

  • Published:
Quantitative Microbiology

Abstract

Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.P. Bell, M. Goldoft, P.M. Griffin, et al. (1994). Journal of the American Medical Association 272(17), 1349.

    Google Scholar 

  • D. Bieber, S.W. Ramer, C.-Y. Wu, et al. (1998). Science 280, 2114.

    Google Scholar 

  • R.L. Buchanan, M.P. Doyle (1997). Foodtechnology, 51(10), 69.

    Google Scholar 

  • CDC (Centers for Disease Control and Prevention) (1997). Morbidity and Mortality Weekly Report 46(12), 258.

    Google Scholar 

  • surv.htm)} (1998).

  • CDC (Centers for Disease Control and Prevention) (1999a). Unpublished data.

  • CDC (Centers for Disease Control and Prevention) (1999b). Unpublished data.

  • CDC (Centers for Disease Control and Prevention) (2000). Morbidity and Mortality Weekly Report 49(10), 201.

    Google Scholar 

  • P.R. Cieslak, S.J. Noble, D.J. Maxson, et al. (1997). American Journal of Public Health 87(2), 176.

    Google Scholar 

  • C. Crockett, C.N. Haas, A. Fazil, et al. (1996). International Journal of Food Microbiology, 30(1–2), 87.

    Google Scholar 

  • M.W. Donnenberg, M.W.A. Donohue-Rolfe, G.T. Keusch (1989). Journal of Infectious Diseases 160, 452.

    Google Scholar 

  • M.P. Doyle, J.L. Schoeni (1984). Applied Environmental Microbiology 48(4), 855.

    Google Scholar 

  • S. Falkow (1996). In: Escherichia coli and Salmonella (Ed. F.C. Neidhardt). ASM Press, Washington, DC, p. 2723.

    Google Scholar 

  • J.M. Farber, W.H. Ross, J. Harwig (1996). International Journal of Food Microbiology 30:145.

    Google Scholar 

  • S. Ferson (1996). Human and Ecological Risk Assessment 2(4), 990.

    Google Scholar 

  • J.E. Galan, P.J. Sansonetti (1996). In: Escherichia coli and Salmonella (Ed. F.C. Neidhardt). ASM Press, Washington, DC, p. 2757.

    Google Scholar 

  • P.M. Griffin (1995). In: Infections of the Gastrointestinal Tract (Eds. M.J. Blaser, P.D. Smith, J.I. Ravdin, et al.). Raven Press, Ltd., New York, p. 739.

    Google Scholar 

  • C.N. Haas (1983). American Journal of Epidemiology 118(4), 573.

    Google Scholar 

  • C.N. Haas (1994). Risk Analysis 14(6), 1097.

    Google Scholar 

  • C.N. Haas J.B. Rose, C. Gerba, S. Regli (1993). Risk Analysis 13(5), 545.

    Google Scholar 

  • C.N. Haas, A. Fazil, J.B. Rose, C.P. Gerba (1999). Quantitative Microbiology 1, 89.

    Google Scholar 

  • D.D. Hancock, T.E. Besser, D.H. Rice, et al. (1998). Preventative Veterinary Medicine 35(11), 19.

    Google Scholar 

  • C. Hedberg, F. Angulo, J. Townes, et al. (1997). Differences in Escherichia coli O157:H7 annual incidence among FoodNet active surveillance sites. FoodNet Conference, Baltimore, MD, June 22–26, 1997.

  • D.L. Holcomb, M.A. Smith, G.O. Water, et al. (1999). Risk Analysis 19(6), 1091.

    Google Scholar 

  • R.C. June, W.W. Ferguson, M.T. Worfel (1953). American Journal of Hygiene 57, 222.

    Google Scholar 

  • V.K. Juneja, O.P. Snyder, Jr., A.C. Williams, B.S. Marmer (1997). Journal of Food Protection 60, 1163.

    Google Scholar 

  • H. Kassenborg (1999). Personal communication (Minnesota Department of Health).

  • H. Kassenborg, C. Hedberg, M. Evans, et al. (1998). In: Program and Abstracts of the International Conference on Emerging Infectious Diseases. American Society of Microbiology, Washington, DC, March 8–11, 1998, p. 50.

  • M.M. Levine, H.L. Dupont, S.B. Formal, et al. (1973). Journal of Infectious Diseases 127(3), 261.

    Google Scholar 

  • M.M. Levine, E.J. Bergquist, D.R. Nalin, et al. (1978). Lancet 1(8074), 1119.

    Google Scholar 

  • H.M. Marks, M.E. Coleman, C.-T. Lin, T. Roberts (1998). Risk Analysis 18(3), 309.

    Google Scholar 

  • P. Mead, P.M. Griffin (1998). Lancet 352, 1207.

    Google Scholar 

  • P. Mead, L. Slutsker, V. Dietz, et al. (1999). Emerging Infectious Diseases, 5(5), 607.

    Google Scholar 

  • J.P. Nataro, J.B. Kaper (1998). Clinical Microbiology Reviews 11(1), 142.

    Google Scholar 

  • S.M. Ostroff, J.M. Kobayashi, J.H. Lewis (1989). Journal of the American Medical Association 262(3), 355.

    Google Scholar 

  • C.H. Pai, J.K. Kelly, G.L. Meyers (1986). Infection and Immunity 51(1), 16.

    Google Scholar 

  • S. Regli, J.B. Rose, C.N. Haas, C.P. Gerba (1991). Journal of the American Water Works Association 83(11), 76.

    Google Scholar 

  • L.W. Riley, R.S. Remis, S.D. Helgerson, et al. (1983). New England Journal of Medicine 308, 681.

    Google Scholar 

  • J.B. Rose, C.N. Haas, S. Regli (1991). American Journal of Public Health 81(6), 709.

    Google Scholar 

  • A.A. Salyers, D.D. Whitt (1994). Bacterial Pathogenesis: A Molecular Approach. American Society for Microbiology Press, Washington, DC, Chapter 16.

    Google Scholar 

  • F. Seiler, J. Alvarez (1996). Risk Analysis 16(1), 5.

    Google Scholar 

  • A. Thayyar-Madabusi (1998). A Quantitative Risk Assessment Model for Listeria monocytogenes and Escherichia coli O157:H7. Drexel University, M.S. Thesis, Philadelphia, PA.

    Google Scholar 

  • USDA/FSIS (US Department of Agriculture, Food Safety and Inspection Service) (1996). Federal Register 61(144), 38805.

    Google Scholar 

  • USDA/FSIS (US Department of Agriculture, Food Safety and Inspection Service) (2000). Risk Assessment of E. coli O157:H7 in Ground Beef (Draft) (Available at: fsis Docket No. 97-013P).

  • D. Vose (1996). Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modeling. John Wiley and Sons, Ltd., West Sussex, England.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, M.R., Ebel, E., Schlosser, W. et al. Dose-Response Envelope for Escherichia coli O157:H7. Quantitative Microbiology 2, 141–163 (2000). https://doi.org/10.1023/A:1011557402204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011557402204

Navigation