Skip to main content
Log in

In vivo Cerebral Pharmacokinetics and Pharmaco-dynamics of Diazepam and Midazolam after Short Intravenous Infusion Administration in Sheep

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The cerebral pharmacokinetics and pharmacodynamics of midazolam and diazepam were examined in chronically instrumented sheep via measurements of their arterio-venous concentration difference across the brain during and after 2-min iv infusions. Diazepam (30 mg) or midazolam (10 mg) were administered on 5 separate occasions to 4 sheep. For both drugs, rapid cerebral uptake occurred during the infusion, which quickly turned to elution in the postinfusion period. However, this process was more rapid for midazolam than diazepam. The cerebral pharmacokinetics of both was better described by a kinetic model with slight membrane limitation rather than flow limitation. For diazepam, the estimated brain:plasma partition coefficient was 2.67, and the first and second compartments filled with half-lives of 2.2 and 0.5 min, respectively. For midazolam, these values were 0.27, 0.26 and 1.34 min, respectively. In a subset of sheep, pulmonary arterial–arterial gradients were too small to measure suggesting limited metabolism and small distribution volumes for both drugs in the lungs. Simultaneous dynamic measurements of cerebral blood flow and algesimetry lagged behind both the arterial and sagittal sinus blood concentrations. The changes in cerebral blood flow were best described by a previously published a dynamic model that incorporated long half-lives for drug dissociation from the benzodiazepine receptor (13.3 and 5.5 min for midazolam and diazepam, respectively). Effect compartment modeling of the cerebral blood flow data showed apparent effect compartment half-lives (t1/2,keo) that were longer than the half-lives of cerebral equilibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Nilsson. Benzodiazepines and their reversal. In B. Kay (ed.), Total Intravenous Anaes-thesia. Monographs in Anaesthesiology, Vol. 21, Elsevier, Amsterdam, 1991, pp. 57–80.

    Google Scholar 

  2. M. Wood. Intravenous anesthetic agents. In M. Wood and A. J. J. Wood (eds), Drugs and Anesthesia. Pharmacology for Anesthetists. Williams and Wilkins, Baltimore, 1990, pp. 179–224.

    Google Scholar 

  3. J. R. Jacobs and J. G. Reves. Effect site equilibration time is a determinant of induction dose requirement. Anesth. Analg. 76:1–6 (1993).

    Google Scholar 

  4. R. N. Upton and G. L. Ludbrook. A model of the kinetics and dynamics of the induction of anesthesia in sheep. Variable estimation for thiopentone and comparison with propofol. Br. J. Anaesth. 82:890–903 (1999).

    Google Scholar 

  5. M. Buhrer, P. O. Maitre, C. Crevoisier, and D. R. Stanski. Electroencephalographic effects of benzodiazepines. II. Pharmacodynamic modeling of the electroencephalographic effects of midazolam and diazepam. Clin. Pharmacol. Ther. 48:555–567 (1990).

    Google Scholar 

  6. M. L. Jack, W. A. Colburn, N. M. Spirt, G. Bautz, M. Zanko, W. D. Horst, and R. A. O'Brien. A pharmacokinetic/pharmacodynamic/receptor binding model to predict the onset and duration of pharmacological activity of benzodiazepines. Prog. Neuropsycho-pharmacol. Biol. Psychiat. 7:629–635 (1983).

    Google Scholar 

  7. R. N. Upton, G. L. Ludbrook, C. Grant, and E. C. Gray. In vivo relationships between the cerebral pharmacokinetics and pharmacodynamics of thiopentone in sheep after short-term administration. J. Pharmacokin. Biopharm. 24:1–18 (1996).

    Google Scholar 

  8. G. L. Ludbrook, R. N. Upton, C. Grant, and E. C. Gray. The blood and brain concen-trations of propofol after rapid intravenous injection in sheep, and their relationships to cerebral effects. Anaesth. Intens. Care 24:445–452 (1996).

    Google Scholar 

  9. R. N. Upton, C. Grant, and G. L. Ludbrook. An ultrasonic Doppler venous outflow method for the continuous measurement of cerebral blood flow in conscious sheep. J. Cerebral Blood Flow Metab. 14:680–688 (1994).

    Google Scholar 

  10. D. J. Doolette, R. N. Upton, and C. Grant. Agreement between estimates of cerebral blood flow changes in the sheep by a real-time ultrasonic Doppler venous outflow method and Kety Schmidt calculations based on 15 minutes nitrous oxide wash-in. Clin. Exp. Pharmacol. Physiol. 26:736–740 (1999).

    Google Scholar 

  11. W. B. Runciman, A. H. Ilsley, L. E. Mather, R. J. Carapetis, and M. M. Rao. A sheep preparation for studying interactions between blood flow and drug disposition I: Physio-logical profile. Br. J. Anaesth. 56:1015–1028 (1984).

    Google Scholar 

  12. C. Grant, R. N. Upton, and T. R. Kuchel. An assessment of the efficacy of intramuscular analgesics for acute pain in the sheep. Aust. Vet. J. 73:129–132 (1996).

    Google Scholar 

  13. Y.F. Huang, R.N. Upton, D. Zheng, C. McLean, E.C. Gray, and C. Grant. The enanti-omer specific kinetics and dynamics of verapamil after rapid intravenous administration to sheep—Physiological analysis and modeling. J. Pharm. Exp. Ther. 284:1048–1057 (1998).

    Google Scholar 

  14. G. L. Ludbrook, C. Grant, R. N. Upton, and C. Penhall. A method for frequent measure-ment of sedation and analgesia in sheep using the response to a ramped electrical stimulus. J. Pharmacol. Toxicol. Methods. 33:17–22 (1995).

    Google Scholar 

  15. R. N. Upton and G. L. Ludbrook. A physiological model of the induction of anesthesia with propofol in sheep. 1. Structure and estimation of parameters. Br. J. Anaesth. 79:497–504 (1997).

    Google Scholar 

  16. R. N. Upton, Y. F. Huang, L. E. Mather, and D. J. Doolette. The relationship between the myocardial kinetics of meperidine and its effect on myocardial contractility—Model independent analysis and optimal regional model. J. Pharmacol. Exp. Ther. 290:694–701 (1999).

    Google Scholar 

  17. H. Motulsky. Intuitive Biostatistics. Oxford University Press, New York, 1995, pp. 63–69.

    Google Scholar 

  18. D. L. Roerig, R. R. Dahl, C. A. Dawson, and R. I. Wang. Effect of plasma protein binding on the uptake of methadone and diazepam in the isolated perfused rat lung. Drug. Metab. Dispos. 12:536–542 (1984).

    Google Scholar 

  19. R.M. Arendt, D.J. Greenblatt, R.H. deJong, J.D. Bonin, D.R. Abernethy, B.L. Ehrenberg, H.G. Giles, E.M. Sellers and R.I. Shader. In vitro correlates of benzodiazepine cerebral spinal fluid uptake, pharmacodynamic action and peripheral distribution. J. Pharm. Exp. Ther. 227:98–106 (1983).

    Google Scholar 

  20. H. Freidman, D. R. Abernathy, D. J. Greenblatt and R. I. Shader. The pharmacokinetics of diazepam and desmethyldiazepam in rat brain and plasma. Psychopharmacology 88:267–270 (1986).

    Google Scholar 

  21. D. J. Greenblatt, H. R. Ochs, and B. L. Lloyd. Entry of diazepam and its major metabolite into cerebrospinal fluid. Psychopharmacology 70:89–93 (1980).

    Google Scholar 

  22. S. Bjorkman, J. Akeson, F. Nilsson, K. Messeter, and B. Roth. Ketamine and midazolam decrease cerebral blood flow and consequently their own rate of transport to the brain: An application of mass balance pharmacokinetics with a changing regional blood flow. J. Pharmacokin. Biopharm. 20:637–652 (1992).

    Google Scholar 

  23. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Prediction of diazepam dispo-sition in the rat and man by a physiologically based pharmacokinetic model. J. Pharmaco-kin. Biopharm. 11:577–593 (1983).

    Google Scholar 

  24. R. M. Arendt, D. J. Greenblatt, D. C. Liebisch, M. D. Luu, and S. M. Paul. Determinants of benzodiazepine brain uptake: lipophilicity vs. binding affinity. Psychopharmacology 93:72–76 (1987).

    Google Scholar 

  25. J. M. Scavone, H. Friedman, D. J. Greenblatt, and R. I. Shader. Effect of age, body composition, and lipid solubility on benzodiazepine tissue distribution in rats. Arzneim. Forsch. 37:1–6 (1987).

    Google Scholar 

  26. S. Bjorkman, A. Fyge, and Q. Zhongquan. Determination of steady state tissue distri-bution of midazolam in the rat. J. Pharm. Sci. 85:887–889 (1996).

    Google Scholar 

  27. T. N. Tozer. Concepts basic to pharmacokinetics. Pharmac. Ther. 14:109–131 (1981).

    Google Scholar 

  28. J. W. Mandema, L. N. Sansom, M. C. Dios-Vieitez, M. Hollander-Jansen, and M. Danhof. Pharmacokinetic-pharmacodynamic modeling of the electroencephalographic effects of benzodiazepines. Correlation with receptor binding and anticonvulsant activity. J. Pharma-col. Exp. Ther. 257:472–478 (1991).

    Google Scholar 

  29. C. Hoyo-Vadillo, J. W. Mandema, and M. Danhof. Pharmacodynamic interaction between midazolam and a low dose of ethanol in vivo. Life Sci. 57:325–333 (1995).

    Google Scholar 

  30. H. Allonen, G. Ziegler, and U. Klotz. Midazolam kinetics. Clin. Pharmacol. Ther. 30:653–661 (1981).

    Google Scholar 

  31. J. W. Mandema, B. Tuk, A. L. van Steveninck, D.D. Breimer, A. F. Cohen, and M. Danhof. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin. Pharmacol. Ther. 51:715–728 (1992).

    Google Scholar 

  32. S. Hovinga, A. M. Stijnen, M. W. Langemeijer, J. W. Mandema, C. F. van Bezooijen, and M. Danhof. Pharmacokinetic-EEG effect relationship of midazolam in aging BN/BiRij rats. Br. J. Pharmacol. 107:171–177 (1992).

    Google Scholar 

  33. P. O. Maitre, B. Funk, C. Crevoisier, and H. R. Ha. Pharmacokinetics of midazolam in patients recovering from cardiac surgery. Eur. J. Clin. Pharmacol. 37:161–166 (1989).

    Google Scholar 

  34. U. Klotz, K. H. Antonin, and P. R. Bieck. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat. J. Pharm. Exp. Ther. 199:67–73 (1976).

    Google Scholar 

  35. T. H. Lin and J. H. Lin. Effects of protein binding and experimental disease states on brain uptake of benzodiazepines in rats. J. Pharmacol. Exp. Ther. 253:45–50 (1990).

    Google Scholar 

  36. C. Dagenais, C. Rousselle, G. M. Pollack, and J. M. Scherrmann. Development of an in situ mouse brain perfusion model and its application to mdr1a p-glycoprotein-deficient mice. J. Cerebral. Blood Flow Metab. 20:381–386 (2000).

    Google Scholar 

  37. E. G. Schuetz, W. T. Beck, and J. D. Schuetz. Modulators and substrates of p-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol. 49:311–318 (1996).

    Google Scholar 

  38. S. P. Letrent, G. M. Pollack, K. R. Brouwer, and K. L. Brouwer. Effects of a potent and specific p-glycoprotein inhibitor on the blood–brain barrier distribution and antinocicep-tive effect of morphine in the rat. Drug Metab. Dispos. 27:827–834 (1999).

    Google Scholar 

  39. D. J. Greenblatt, B. L. Ehrenberg, J. Gunderman, A. Locniskar, J. M. Scavone, J. S. Harmatz, and R.I. Shader. Pharmacokinetic and electroencephalographic study of intra-venous diazepam, midazolam, and placebo. Clin. Pharmacol. Ther. 45:356–365 (1989).

    Google Scholar 

  40. D. R. Mould, T. M. DeFeo, S. Reele, G. Milla, R. Limjuco, T Crews, N. Choma, and I.H. Patel. Simultaneous modeling of the pharmacokinetics and pharmacodynamics of midazolam and diazepam. Clin. Pharmacol. Ther. 58:35–43 (1995).

    Google Scholar 

  41. D. R. Stanski, R. J. Hudson, T. D. Homer, L. J. Saidman, and E. Meathe. Pharmacodyn-amic modeling of thiopental anesthesia. J. Pharmacokinet. Biopharm. 12:22–240 (1984).

    Google Scholar 

  42. B. Tuk, V. M. M. Herben, J. W. Mandema, and M. Danhof. Relevance of arteriovenous concentration differences in pharmacokinetic-pharmacodynamic modeling of midazolam. J. Pharm. Exp. Ther. 284:202–207 (1998).

    Google Scholar 

  43. P. Fiset, H. L. Lemmens, T. E. Egan, S. L. Shafer, and D. R. Stanski. Pharmacodynamic modeling of the electroencephalographic effects of flumazenil in healthy volunteers sedated with midazolam. Clin. Pharmacol. Ther. 58:567–582 (1995).

    Google Scholar 

  44. J. C. Connelly and J. W. Bridges. The distribution and role of cytochrome P-450 in extra-hepatic organs. In: J. W. Bridges and L. F. Chasseaud (eds), Progress in Drug Metabolism, Vol. 5. Wiley, Chichester, 1980, pp. 2–89.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upton, R.N., Ludbrook, G.L., Grant, C. et al. In vivo Cerebral Pharmacokinetics and Pharmaco-dynamics of Diazepam and Midazolam after Short Intravenous Infusion Administration in Sheep. J Pharmacokinet Pharmacodyn 28, 129–153 (2001). https://doi.org/10.1023/A:1011550915515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011550915515

Navigation