Skip to main content
Log in

Magnetic Attitude Control System for Low-Earth Orbit Satellites

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

A small spacecraft (SC) under consideration is intended forperforming a scientific mission on the low-Earth orbit for a long time(a year or more). A control system of the SC provides the constructionof regime of three-axis orientation of the SC in the orbital coordinatesystem and the stabilization of that regime, and must be autonomous,low-weight and low-cost. The magnetic control system that consists ofthe information subsystem based solely on three-axis magnetometermeasurings and the magnetic actuators satisfies in the best wayrequirements mentioned above. Such system can estimate both orbitalmotion parameters and attitude ones of the SC. But the absence of theadditional instruments and damping devices complicates the estimationsince the range of initial conditions uncertainly is wide and theproblem of estimating becomes essentially nonlinear. To get over thesedifficulties a recursive state estimation algorithm with enhancedconvergence is proposed. The magnetic control moment is synthesized bythe vector function Lyapunov method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgart, M.S., 'Gravity gradient and magnetorquing attitude control for low-cost low-Earth orbit satellites: The UOSAT experience', in Proceedings of the AIAA/AAS Astrodynamics Conference, AIAA, Washington, DC, 1988, 421–430.

  2. Psiaki, M.L., Martel, F. and Pal, P.K., 'Three-axis attitude determination via Kalman filtering of magnetometer data', Journal of Guidance, Control and Dynamics 13(3), 1990, 506–514.

    Google Scholar 

  3. Lebedev, D.V. and Tkachenko, A.I., 'The control of the spherical motion of a spacecraft in the magnetic field of the earth: Part I. Dataware', Journal of Automatization and Information Sciences 29(4), 1997, 18–30.

    Google Scholar 

  4. Balashova, N.N., Barankov, P.A., Maslov, V.D., Pivovarov, M.L., Pochukaev, V.N., Sintsova, L.N., Turmina, L.O., Sharova, V.A., 'Metod geomagnitnoj navigacii okolozemnih letatel'nih apparotov', Izvestiya AN USSR. Tehnicheskaya kibernetika 3, 1990, 128–143.

    Google Scholar 

  5. Duboshin, G.N., Nebesnaya mehanika, Osnovnye zadaci i metodi, Nauka, Moscow, 1975.

    Google Scholar 

  6. Lur'e, A.I., Analiticheskaya mehanika, Fizmatgiz, Moscow, 1961.

    Google Scholar 

  7. Beletskij, V.V., Dvizenie sputnika otnositel'no centra mass v gravitqacionnom pole, Izdatel'stvo Moscow University, 1975.

  8. Lebedev, D.V. and Tkachenko, A.I., Information and Alghorithmic Aspects of Vehicles Control, Naukova Dumka, Kiev, 2000.

    Google Scholar 

  9. Furasov, V.D., Ustojcivost' dvizeniya, ocenki i stabilizaciya, Nauka, Moscow, 1977.

    Google Scholar 

  10. Bakan, G.M.,' Algoritmi postroeniya garantirovannih i razmitih ellipsoidal'nih ocenok v linejnih sistemah na osnove metoda naimen'shih kvadratov', Problemi upravleniya i informatiki 3, 1995, 117–129.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, D., Tkachenko, A. Magnetic Attitude Control System for Low-Earth Orbit Satellites. Multibody System Dynamics 6, 29–37 (2001). https://doi.org/10.1023/A:1011484008063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011484008063

Navigation