Skip to main content
Log in

Abstract

A perpetuity is a random variable that can be represented as \(1 + W_1 + W_1 W_2 + W_1 W_2 W_3 + \cdot \cdot \cdot ,\), where the W i's are i.i.d. random variables. We study exact random variate generation for perpetuities and discuss the expected complexity. For the Vervaat family, in which\(W_1 \underline{\underline {\mathcal{L}}} {\text{ }}U^{1/\beta } ,\beta > 0,U\) uniform [0, 1], all the details of a novel rejection method are worked out. There exists an implementation of our algorithm that only uses uniform random numbers, additions, multiplications and comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Tables, Dover Publications: New York, N.Y., 1970.

    Google Scholar 

  • L. Bondesson, “On simulation from infinitely divisible distributions,” Advances in Applied Probability vol. 14 pp. 855-869, 1982.

    Google Scholar 

  • N. Bouleau, Processus Stochastiques et Applications, Hermann: Paris, 1988.

    Google Scholar 

  • J. F. Chamayon, “Pseudo random numbers for the Landau and Vavilov distributions,” Journal of Computational Physics, 1997.

  • J. F. Chamayon and B. Schorr, “On a class of random variables arising in atomic cascade models,” Report, European Organization for Nuclear Research, Geneva, 1975.

    Google Scholar 

  • P. Danien, P. W. Laud, and A. F. M. Smith, “Approximate random variate generation from infinitely divisible distributions with applications to Bayesian inference,” Journal of the Royal Statistical Society vol. B57 pp. 547-563, 1995.

    Google Scholar 

  • P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press: New York, 1975.

    Google Scholar 

  • L. Devroye, “The computer generation of random variables with a given characteristic function,” Computers and Mathematics with Applications vol. 7 pp. 547-552, 1981a.

    Google Scholar 

  • L. Devroye, “The series method in random variate generation and its application to the Kolmogorov-Smirnov distribution,” American Journal of Mathematical and Management Sciences vol. 1 pp. 359-379, 1981b.

    Google Scholar 

  • L. Devroye, “On the use of probability inequalities in random variate generation,” Journal of Statistical Computation and Simulation vol. 20 pp. 91-100, 1984a.

    Google Scholar 

  • L. Devroye, “Methods for generating random variates with Pólya characteristic functions,” Statistics and Probability Letters vol. 2 pp. 257-261, 1984b.

    Google Scholar 

  • L. Devroye, “An automatic method for generating random variables with a given characteristic function,” SIAM Journal of Applied Mathematics vol. 46 pp. 698-719, 1986a.

    Google Scholar 

  • L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag: New York, 1986b.

    Google Scholar 

  • L. Devroye, “On random variate generation when only moments or Fourier coefficients are known,” Mathematics and Computers in Simulation vol. 31 pp. 71-89, 1989.

    Google Scholar 

  • L. Devroye, “Algorithms for generating discrete random variables with a given generating function or a given moment sequence,” SIAM Journal on Scientific and Statistical Computing vol. 12 pp. 107-126, 1991.

    Google Scholar 

  • N. G. de Bruijn, “The asymptotic behaviour of a function occurring in the theory of primes,” Journal of the Indian Mathematical Society vol. 15 pp. 25-32, 1951.

    Google Scholar 

  • D. Dufresne, “The distribution of a perpetuity, with applications to risk theory and pension funding,” Scandinavian Actuarial Journal pp. 39-79, 1990.

  • D. Dufresne, “On the stochastic equation L.X. L.B.X. C. and a property of gamma distributions,” Bernoulli vol. 2 pp. 287-291, 1996.

    Google Scholar 

  • D. Dufresne, “Algebraic properties of beta and gamma distributions, and applications,” Advances in Applied Mathematics vol. 20 pp. 285-299, 1998.

    Google Scholar 

  • P. Embrechts and C. M. Goldie, “Perpetuities and random equations,” in: P. Mandl and M. Hušková (eds) Asymptotic Statistics: Proceedings of the Fifth Prague Symposium, Physica-Verlag: Heidelberg, pp. 75-86, 1994.

    Google Scholar 

  • P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events, Springer-Verlag: Berlin, 1997.

    Google Scholar 

  • C. M. Goldie and R. Grübel, “Perpetuities with thin tails,” Advances in Applied Probability vol. 28 pp. 463-480, 1996.

    Google Scholar 

  • R. Grübel and U. Rösler, “Asymptotic distribution theory for Hoare's selection algorithm,” Advances of Applied Probability vol. 28 pp. 252-269, 1996.

    Google Scholar 

  • H. Kesten, “Random difference equations and renewal theory for products of random matrices,” Acta Mathematica, vol. 131 pp. 207-248, 1973.

    Google Scholar 

  • J. G. Propp and D. B. Wilson, “Exact sampling with coupled Markov chains and applications to statistical mechanics,” Random Structures and Algorithms vol. 9 pp. 223-252, 1996.

    Google Scholar 

  • J. Spanier and K. B. Oldham, An Atlas of Functions, Springer-Verlag: Berlin, 1987.

    Google Scholar 

  • L. Takács, “On secondary processes generated by a Poisson process and their applications in physics,” Acta Mathematica Academiae Scientificarum Hungarica vol. 5 pp. 203-236, 1954

    Google Scholar 

  • L. Takács, “On stochastic processes connected with certain physical recording apparatuses,” Acta Mathematica Academiae Scientificarum Hungarica vol. 6 pp. 363-379, 1955.

    Google Scholar 

  • G. Ulrich. “Computer generation of distributions on the m-sphere,” Applied Statistics vol. 33 pp. 158-163, 1984.

    Google Scholar 

  • W. Vervaat, “On a stochastic difference equation and a representation of non-negative infinitely divisible random variables,” Advances in Applied Probability vol. 11 pp. 750-783, 1979.

    Google Scholar 

  • S. G. Walker, “Random variate generation from an infinitely divisible distribution via Gibbs sampling,” Technical Report, Imperial College, London, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devroye, L. Simulating Perpetuities. Methodology and Computing in Applied Probability 3, 97–115 (2001). https://doi.org/10.1023/A:1011470225335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011470225335

Navigation