Skip to main content
Log in

Microvascular Alterations in Sepsis

  • Published:
Sepsis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991;115:457–469.

    PubMed  Google Scholar 

  2. Hinshaw LB. Sepsis/septic shock: Participation of the microcirculation—An abbreviated review. Crit Care Med 1996;24: 1072–1078.

    PubMed  Google Scholar 

  3. McCuskey RS, Urbaschek R, Urbaschek B. The microcirculation during endotoxemia. Cardiovasc Res 1996;32: 752–763.

    PubMed  Google Scholar 

  4. Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 1999;27:1369–1377.

    PubMed  Google Scholar 

  5. Groeneveld ABJ, Nauta JJP, Thijs LG. Peripheral vascular resistance in septic shock: Its relation to outcome. Intensive Care Med 1988;14:141–147.

    PubMed  Google Scholar 

  6. Groeneveld ABJ, Bronsveld W, Thijs LG. Hemodynamic determinants of mortality in human septic shock. Surgery 1986;99:140–152.

    PubMed  Google Scholar 

  7. Dorio V. Contribution of peripheral blood flow pooling to central hemodynamic disturbances during endotoxin insult in intact dogs. Crit Care Med 1989;17:1314–1319.

    PubMed  Google Scholar 

  8. Carrol G, Synder J. Hyperdynamic severe intravascular sepsis depends on fluid administration in cyonomolgus monkey. Am J Physiol 1982;243:131–141.

    Google Scholar 

  9. Astiz ME, Rackow EC, Haydon P, Karras G, Weil MH. Skeletal muscle blood flow and venous capacitance in patients with severe sepsis and systemic hypoperfusion. Chest 1989;96:363–366.

    PubMed  Google Scholar 

  10. Lam C, Tyml K, Martin CM, Sibbald WJ. The skeletal muscle microcirculation in a rat model of normotensive sepsis. J Clin Invest 1994;94:2077–2083

    PubMed  Google Scholar 

  11. Morisaki H, Bloos F, Neal A, Pitt M, Cross L, Keys J, Martin C, Sibbald W. J. Colloid infusion preserves microvascular integrity better than crystalloid in hyperdynamic sepsis.Crit Care Med 1992;20:S101 (Abst).

    Google Scholar 

  12. Morisaki H, Bloos F, Keys J, Martin C, Neal A, Sibbald WJ. Compared to crystalloid, colloid therapy slows the progression of extrapulmonary tissue injury in septic sheep. J Appl Physiol 1994;77:1507–1518.

    PubMed  Google Scholar 

  13. Engler RL, Schmid-Schoenbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 1983;111:98–111.

    PubMed  Google Scholar 

  14. Engler RL, Dahlgren MD, Peterson MA, Dobbs A, Schmid-Schonbein GW. Accumulation of polymorphonuclear leukocytesduring 3-h experimental myocardial ischemia. Am J Physiol 1986;251:93–100.

    Google Scholar 

  15. Bohlen HG, Gore RW. Preparation of rat intestinal muscle and mucosa for quantitative microcirculatory studies. Microvasc Res 1976;11:103–110.

    PubMed  Google Scholar 

  16. Granger DN, Kvietys PR, Korthuis RJ. Microcirculation of the intestinal mucosa. In: Wood JD, ed. Handbook of Physiology. American Society of Physiology, 1989:1405–1474.

  17. Whitworth PW, Cryer HM, Garrison RN. Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 1989;27:111–122.

    PubMed  Google Scholar 

  18. Theuer CJ, Wilson MA, Steeb GD, Garrison RN. Microvascular vasoconstriction and mucosal hypoperfusion of the rat small intestine during bacteremia. Circ Shock 1993;40:61–68.

    PubMed  Google Scholar 

  19. Unger LS, Cryer HM, Garrison RN. Differential response of the microvasculature in the liver during bacteremia. Circ Shock 1989;29:335–344.

    PubMed  Google Scholar 

  20. Baker CH, Wilmoth FR. Microvascular responses to E.coli endotoxin with altered adrenergic activity. Circ Shock 1984; 12:165–176.

    PubMed  Google Scholar 

  21. Baker CH, Sutton ET. Arteriolar endothelium-dependent vasodilation occurs during endotoxin shock. Am J Physiol 1993;264:1118–1123.

    Google Scholar 

  22. Astiz ME, Tilly E, Rackow ED, Weil MH. Peripheral vascular tone in sepsis. Chest 1991;99:1072–1075.

    PubMed  Google Scholar 

  23. Burton KS, Johnson PC. Reactive hyperemia in individual capillaries of skeletal muscle. Am J Physiol 1972;223: 517–524.

    PubMed  Google Scholar 

  24. Koller A, Kaley G. Role of endothelium in reactive dilation of skeletal muscle arterioles. Am J Physiol 1990;259: 1313–1316.

    Google Scholar 

  25. Ward ME, Magder SA, Hussain SN. Role of endotheliumderived factor in reactive hyperemia in canine diaphragm. Am J Physiol 1993;274:1606–1612.

    Google Scholar 

  26. Samsel RW, Nelson DP, Sanders WM, Wood LDH, Schumacker PT. Effect of endotoxin on systemic and skeletal muscle O2 extraction. J Appl Physiol 1998;65:1377–1382.

    Google Scholar 

  27. Hartl WH, Gunther B, Inthorn D. Reactive hyperemia in patients with septic conditions. Surgery 1988;103:440–444.

    PubMed  Google Scholar 

  28. Nevière R, Mathieu D, Chagnon JC, Lebleu N, Millien JP, Wattel F. Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 1996;153:191–195.

    PubMed  Google Scholar 

  29. Holzmann A. Nitric oxide and sepsis. Respir Care Clin N Am 1997;3:537–550.

    PubMed  Google Scholar 

  30. Lush CW, Kvietys PR. Microvascular dysfunction in sepsis. Microcirculation 2000;7:83–101.

    PubMed  Google Scholar 

  31. Szabo S. Alterations in nitric oxide production in various forms of circulatory shock. New Horizons 1995;3:2–32.

    PubMed  Google Scholar 

  32. Grocott-Mason R, Fort S, Lewis MJ, Shah AM. Myocardial relaxant effect of exogenous nitric oxide in isolated ejecting hearts. Am J Physiol 1994;266:1699–1705.

    Google Scholar 

  33. Cobb JP. N omega-amino-L-arginine, an inhibitor of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake canines challenged with endotoxin. J Exp Med 1992;176:1175–1182.

    PubMed  Google Scholar 

  34. Vincent JL, Zhang H, Szabo C, Preiser JC. Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 2000;161: 1781–1785.

    PubMed  Google Scholar 

  35. Zhou M, Wang P, Chaudry IH. Endothelial nitric oxide synthase is downregulated during hyperdynamic sepsis. Biochim Biophys Act 1997;1335:182–190.

    Google Scholar 

  36. Nevière R, Guery B, Mordon S, Zerimech F, Charre S, Wattel F, Chopin C. Inhaled NO reduces leukocyte-endothelial cell interactions and myocardial dysfunction in endotoxemic rats. Am J Physiol (Heart Circ) Physiol 2000:278 H1783–1790.

    Google Scholar 

  37. Vallet B, Lund N, Curtis SE, Kelly D, Cain SM. Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 1994;76:793–800.

    PubMed  Google Scholar 

  38. Boczkowski J, Vicaut E, Aubier M. In vivo effects of Escherichia coli endotoxemia on diaphragmatic microcirculation in rats. J Appl Physiol 1992;72:2219–2224.

    PubMed  Google Scholar 

  39. Piper RD, Pitt-hyde M, Li F, Sibbald WJ, Potter RF. Microcirculatory changes in rats skeletal muscle in sepsis. Am J Respir Crit Care Med 1996;154:931–937.

    PubMed  Google Scholar 

  40. Cryer HM, Garrison RN, Kaebnick HW, Harris PD, Flint LM. Skeletal microcirculatory responses to hyperdynamic escherichia coli sepsis in unanesthetizedd rats. Arch Surg 1987;122:86–92.

    PubMed  Google Scholar 

  41. Cryer HM, Garrison RN, Harris PD. Role of muscle microvasculature during hyperdynamic and hypodynamic phases of endotoxin shock in decerebrate rats. J Trauma 1988;28:312–318.

    PubMed  Google Scholar 

  42. Drazenovic R, Samsel RW, Wlam ME, Doerschuk CM, Schumacker PT. Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 1992;72:259–265.

    PubMed  Google Scholar 

  43. Farquhar I, Martin CM, Lam C, Potter R, Ellis C, Sibbald WJ. Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 1995;61:190–196.

    Google Scholar 

  44. Nevière R, Pitt-Hyde M, Piper RD, Sibbald WJ, Potter R. Microvascular perfusion deficits are not prerequisite for mucosal injury in septic rats. Am J Physiol 1999;276:933–937.

    Google Scholar 

  45. Gutierrez G, Lund N, Palizas F. Rabbit skeletal muscle PO2 during hypodynamic sepsis. Chest 1991;99:224–229.

    PubMed  Google Scholar 

  46. Rosser D, Stiwill R, Jacobson D, Singer M. Cardiorespiratory and tissue oxygen dose response to rat endotoxemia. Am J Physiol Physiol 1996;271:H891–H895.

    Google Scholar 

  47. Intaglietta M. Arteriolar vasomotion: Implications for tissue ischemia. Blood Vessels 1991;28:1–7.

    Google Scholar 

  48. Bertuglia S, Colantuoni A, Coppini G, Intaglietta M. Hypoxia-or hyperoxia induces changes in arteriolar vasomotion in skeletal muscle microcirculation. Am J Physiol 1991;260:362–372.

    Google Scholar 

  49. Meyer JU, Lindbom L, Intaglietta M. Coordinated diameter oscillations at arteriolar bifurcations in skeletal muscle. Am J Physiol (Heart Circ Physiol) 1987;235:568–573.

    Google Scholar 

  50. Meyer JU, Borgstrom P, Lindboom L, Intaglietta M. Vasomotion patterns in skeletalmuscle arterioles during changes in arterial pressure. Microvasc Res 1988;35:193–203.

    PubMed  Google Scholar 

  51. Madorin S, Martin CM, Sibbald WJ. Dopexamine attenuates flowmotion of ileal mucosal arterioles in septic rats. Crit Care Med 1999;27:394–400.

    PubMed  Google Scholar 

  52. Simchon S, Jan K, Chien S. Influence of reduced red blood cell deformability on regional blood flow. Am J Physiol 1987;253:898–903.

    Google Scholar 

  53. Vicaut E. Statistical estimation of microcirculatory parameters. Microvasc Res 1986;32:244–247.

    PubMed  Google Scholar 

  54. Machiedo GW, Powell RJ, Rush BF, Swislocki NI, Dikdan G. The incidence of decreased red blood cell deformability in sepsis and the association with oxygen free radical damage and multiple-system organ failure. Arch Surg 1989;124: 1386–1389.

    PubMed  Google Scholar 

  55. Powell RJ, Machiedo GW, Rush BJ, Dikdan G. Oxygen free radicals: Effect on red cell deformability in sepsis. Crit Care Med 1991;19:732–735.

    PubMed  Google Scholar 

  56. Hurd TC, Dasmahapatra KS, Rush BF, Machiedeo GW. Red blood cell deformability in human and experimental sepsis. Arch Surg 1988;123:217–220.

    PubMed  Google Scholar 

  57. Voerman HJ, Fonk T, Thijs LG. Changes in hemorheology in patients with sepsis or septic shock. Circ Shock 1989; 29:219–227.

    PubMed  Google Scholar 

  58. Baskurt OK, Gelmont D, Meiselman HJ. Red blood cell deformability in sepsis. Am J Respir Crit Care Med 1998;157: 421–427.

    PubMed  Google Scholar 

  59. Todd JC, Poulos ND, Davidson DL. Role of leukocyte in endotoxin-induced alterations of the red blood cell membrane. Am Surg 1993;59:9–12.

    PubMed  Google Scholar 

  60. Granger DN. The microcirculation and inflammation: Modulation of leukocyte–endothelial cell adhesion. J Leukoc Biol 1994;55:662–675.

    PubMed  Google Scholar 

  61. Manciet LH, Poole DC, McDonagh PF, Copeland JG,Mathieu-Costello O. Microvascular compression during myocardial ischemia: Mechanistic basis for no-reflow phenomenon. Am J Physiol 1994;35:1541–1550.

    Google Scholar 

  62. Bagge U, Ammundson B, Lauritzen C. White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol Scand 1980;108:159–163.

    PubMed  Google Scholar 

  63. Kubes P. Polymorphonuclear leukocyte–endothelium interactions: A role for pro-inflammatory and anti-inflammatory molecules. Can J Physiol Pharmacol 1993;71:88–97.

    PubMed  Google Scholar 

  64. Kubes P. Endogenous but not exogenous nitric oxide decreases TNF-alpha-induced leukocyte rolling. AmJ Physiol 1997;273:628–635.

    Google Scholar 

  65. Boldt J, Muller M, Kuhn D, Linke LC, Hempelmann G. Circulating adhesion molecules in the critically ill: A comparison between trauma and sepsis patients. Intensive Car Med 1996;22:122–128.

    Google Scholar 

  66. Kayal S, Jais JP, Aguini N, Chaudiere J, Labrousse J. Elevated circulating E-selectin, intercellular adhesion molecule-1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 1998;157:776–784.

    PubMed  Google Scholar 

  67. Panes J, Granger DN. Leukocyte-endothelial cell interactions: Molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 1998;114:1066–1090.

    PubMed  Google Scholar 

  68. Boyd AJ, Sherman IA, Saibil FG. Intestinal microcirculation and leukocyte behaviour in ischemia-reperfusion injury. Microvasc Res 1994;47:355–368.

    PubMed  Google Scholar 

  69. Korthuis RJ, Anderson DC, Granger DN. Role of neutrophil-endothelial cell adhesion in inflammatory disorders. J Crit Care 1994;9:47–71.

    PubMed  Google Scholar 

  70. Suematsu MF, Delano FA, Poole RL. Spatial and temporal correlation between leukocyte behaviour and cell injury in post-ischemic rat skeletal muscle microcirculation. Lab Invest 1994;70:684–695.

    PubMed  Google Scholar 

  71. Goddard CM. Leukocyte activation does not mediate myocardial leukocyte retention during endotoxemia in rabbits. Am J Physiol 1998;275:1548–1557.

    Google Scholar 

  72. Granton JT, Goddard CM, Allard MF, Van Eeden SF, Walley KR. Leukocytes and decreased left-ventricular contractility during endotoxemia in rabbits. Am J Respir Crit Care Med 1997;155:1977–1983.

    PubMed  Google Scholar 

  73. Thomas JR, Harlan JM, Rice CL, Winn HK. Role of leukocyte CD11/CD18 complex in endotoxic and septic shock in rabbits. J Appl Physiol 1992;73:1510–1516.

    PubMed  Google Scholar 

  74. Davenpeck KL, Zagorski J, Schleimer RP, Bochner BS. Lipopolysacchraride-induced leukocyte rolling and adhesion in the rat mesenteric microcirculation: Regulation by glucocorticoids and role of cytokines. J Immunol 1998;161:6861–6870.

    PubMed  Google Scholar 

  75. Hickey MJ. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte–endothelium interactions in endotoxemia. FASEB J 1997;11:955–964.

    PubMed  Google Scholar 

  76. Jaeschke H, Farhood A, Smith CW. Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18 dependent mechanism. Am J Physiol 1991;261:1051–1056.

    Google Scholar 

  77. Laszlo F, Whittle BJR, Moncada S. Time-dependent enhancement or inhibition of endotoxin-induced vascular injury in rat intestine by nitric oxide synthase inhibitors. Br J Pharmacol 1994;111:1309–1315.

    PubMed  Google Scholar 

  78. McGovern VJ. The pathophysiology of gram-negative septicaemia. Pathology 1972;4:265–271.

    PubMed  Google Scholar 

  79. Goddard CM, Allard MF, Hogg J, Herbertson MJ, Walley KR. Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol 1996;270: 1446–1452.

    Google Scholar 

  80. Traber DL, Redl H, Schlag G. Cardiopulmonary responses to continuous administration of endotoxin. Am J Physiol (Heart Circ Physiol) 1988;254:833–839.

    Google Scholar 

  81. Traber LD, Brazeal BA, Schmidt M. Pentafraction reduces the lung lymph response after endotoxin administration in the ovine model. Circ Shock 1992;36:93–103.

    PubMed  Google Scholar 

  82. Groeneveld ABJ, Heidendal GAK, den Hollander W, Nauta JJP, Thijs LG. Noninvasive assessment of regional albumin extravasation in porcine septic shock. J Crit Care 1987; 2:245–255.

    Google Scholar 

  83. Royall JA, Berkow RL, Beckman JS, Cunningham MK, Matalon S, Freeman BA. Tumor necrosis factor and interleukin 1a increase vascular endothelial permeability. Am J Physiol 1989;257:L399–L410.

    PubMed  Google Scholar 

  84. Hardaway RM. Trauma, sepsis and disseminated intravascular coagulation. J Intensive Care Med 1995;10:145–152.

    PubMed  Google Scholar 

  85. Colman RW. Disseminated intravascular coagulation due to sepsis. Semin Hematol 1994;3:10–17.

    Google Scholar 

  86. Astiz ME, DeGent GE, Lin RY, Rackow EC. Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 1995;23:265–271.

    PubMed  Google Scholar 

  87. Van der Meer TJ, Wang H, Fink MP. Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 1995;23:1217–1226.

    PubMed  Google Scholar 

  88. Vary TC, Siegel JH, Tall BD, Morris, JG. Metabolic effects of partial reversal of pyruvate dehydrogenase activity by dichloroacetate in sepsis. Circ Shock 1988;23:3–18.

    Google Scholar 

  89. Hasibeder W, Germann R, Wolf HJ. Effects of short-term endotoxemia and dopamine on mucosal oxygenation in porcine jejunum. Am J Physiol 1996;270:G667–G675.

    PubMed  Google Scholar 

  90. Ince C, Ashruf JF, Avontuur JA. Heterogeneity of the hypoxic state in rats heart is determined at the capillary level. Am J Physiol 1993;264:H294–H301.

    PubMed  Google Scholar 

  91. Sinaasapel M, Donkersloot C, Van Bommel J, Avontuur JA. PO2 measurements in the intestinal microcirculation. Am J Physiol 1999;276:G1515–G1520.

    PubMed  Google Scholar 

  92. Intaglietta M, Johnson PC, Winslow RM. Microvascular and tissue oxygen distribution. Cardiovasc Res 1996;32:632–643.

    PubMed  Google Scholar 

  93. Avontuur JA, Bruining HA, Ince C. Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Circ Res 1995;76:418–425.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevière, R., Sibbald, W. Microvascular Alterations in Sepsis. Sepsis 4, 81–88 (2001). https://doi.org/10.1023/A:1011457518646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011457518646

Keywords

Navigation