Skip to main content
Log in

Microfabricated Drug Delivery Systems: Concepts to Improve Clinical Benefit

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Important classes of drugs have yet to benefit from advances in drug delivery technology. Strategies to provide reasonable oral bioavailability of peptide and proteins drugs remain elusive, for example. Systemic cancer drugs produce dose-limiting toxicities largely due to their lack of selectivity. Although delivery systems such as immunotoxins and liposomes improve selectivity of a few cancer drugs, current technology is not suitable for the vast majority of such molecules. Systems able to mimic the body's natural feedback mechanisms for secretion of hormones such as insulin represents yet another unmet medical need. Microfabrication techniques may permit the creation of drug delivery systems that possess a combination of structural, mechanical, and perhaps electronic features which may surmount some of these challenges. In this review, drug delivery concepts are presented which capitalize on the strengths of microfabrication. Possible applications include micromachined silicon membranes to create implantable biocapsules for the immunoisolation of pancreatic islet cells—as a possible treatment for diabetes—and sustained release of injectable drugs needed over long time periods. Asymmetrical, drug-loaded microfabricated particles with specific ligands linked to the surface are proposed for improving oral bioavailability of peptide (and perhaps protein) drugs. Similarly designed particles with sizes in the 2–10 μm range may be safe to administer intravenously and a clinical strategy is suggested for using such microparticles for treating solid tumors. Although hypothetical now, work is in progress to prove the concepts presented here and to validate the intuitive belief that there is an important place for microfabricated systems in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Andersson, H. Gunne, B. Agerberth, A. Boman, T. Bergman, B. Olsson, A. Dagerlind, H. Wigzell, H.G. Boman, and G.H. Gudmundsson, Vet. Immunol. Immunopathol. 54, 123-126 (1996).

    Google Scholar 

  • M.A. Arangoa, G. Ponchel, A.M. Orecchioni, M.J. Renedo, D. Duchene, and J.M. Irache, Eur. J. Pharm. Sci. 11, 333-341 (2000).

    Google Scholar 

  • D.D. Breimer, J Controlled Release 62, 3-6 (1999).

    Google Scholar 

  • M. Brissova, I. Lacik, A.C. Powers, A.V. Anilkumar, and T. Wang, J. Biomed. Mater. Res. 39, 61-70 (1998).

    Google Scholar 

  • T. Chen, T.F. Miller, P. Prasad, J. Lee, J. Krauss, K. Miscik, G. Kalafsky, and J.F. McLeod, J. Clin. Pharmacol. 40, 475-481 (2000).

    Google Scholar 

  • C.K. Colton and E.S. Avgoustiniatos, J. Biomech. Eng. 113, 152-270 (1991).

    Google Scholar 

  • R.L. Conhaim and L.A. Rodenkirch, Microcirculation 4, 51-59 (1997).

    Google Scholar 

  • R.L. Conhaim and L.A. Rodenkirch, J. Appl. Physiol. 85, 47-52 (1998).

    Google Scholar 

  • S.N. Davies and D.K. Granner, The Pharmacological Basis of Therapeutics (McGraw Hill, New York, 1996), 1487-1517.

    Google Scholar 

  • S.S. Davis, Trends Biotechnol. 15, 217-324 (1997).

    Google Scholar 

  • S.S. Davis, N. Washington, G.D. Parr, A.H. Short, V.A. John, P. Lloyd, and S.M. Walker, Br. J. Clin. Pharmacol. 26, 435-443 (1988).

    Google Scholar 

  • T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnol. Bioeng. 57, 118-120 (1998).

    Google Scholar 

  • T.A. Desai, W.H. Chu, G. Rasi, P. Sinibaldi-Vallebona, E. Guarino, and M. Ferrari, Journal of Biomedical Microdevices 1, 131-138 (1999a).

    Google Scholar 

  • T.A. Desai, D. Hansford, and M. Ferrari, Journal of Membrane Science 159, 221-231 (1999b).

    Google Scholar 

  • J.W. Fara, R.E. Myrback, and D.R. Swanson, Br. J. Clin. Pharmacol. 19, 91S-95S (1985).

    Google Scholar 

  • A. Fasano and S. Uzzau, J. Clin. Invest. 99, 1158-1164 (1997).

    Google Scholar 

  • L.B. Faulkner, F. Tucci, A. Tamburini, V. Tintori, A.A. Lippi, F. Bambi, F. Malentacca, C. Azzari, A.M. Gelli, F. Genovese, and G. Bernini, Bone Marrow Transplant 21, 1091-1095 (1998).

    Google Scholar 

  • D. Figeys and D. Pinto, Anal. Chem. 72, 330A-335A (2000).

    Google Scholar 

  • J.E. Fowler, M. Flanagan, D.M. Gleason, I.W. Klimberg, J.E. Gottesman, and R. Sharifi, Urology 55, 639-642 (2000a).

    Google Scholar 

  • J.J. Fowler, J.E. Gottesman, C.F. Reid, G.J. Andriole, and M.S. Soloway, J. Urol. 164, 730-734 (2000b).

    Google Scholar 

  • I. Fujimasa, Appl. Biochem. Biotechnol. 38, 233-242 (1993).

    Google Scholar 

  • A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, Cancer Res. 54, 987-992 (1994).

    Google Scholar 

  • R. Giavazzi and T. Giulia, Forum (Genova) 9, 261-272 (1999).

    Google Scholar 

  • D.L. Gu, A.M. Gonzalez, M.A. Printz, J. Doukas, W. Ying, M. D'Andrea, D.K. Hoganson, D.T. Curiel, J.T. Douglas, B.A. Sosnowski, A. Baird, S.L. Aukerman, and G.F. Pierce, Cancer Res. 59, 2608-2614 (1999).

    Google Scholar 

  • J. Holash, S.J. Wiegand, and G.D. Yancopoulos, Oncogene 18, 5356-5362 (1999).

    Google Scholar 

  • O. Ishida, K. Maruyama, K. Sasaki, and M. Iwatsuru, Int. J. Pharm. 190, 49-56 (1999).

    Google Scholar 

  • K. Iwanaga, S. Ono, K. Narioka, M. Kakemi, K. Morimoto, S. Yamashita, Y. Namba, and N. Oku, J. Pharm. Sci. 88, 248-252 (1999).

    Google Scholar 

  • M.S. Khan and A. O'Brien, Urol. Int. 60, 33-40 (1998).

    Google Scholar 

  • H.K. Kim and T.G. Park, Biotechnol. Bioeng. 65, 659-667 (1999).

    Google Scholar 

  • J.M. Korth-Bradley, A.S. Rubin, R.K. Hanna, D.K. Simcoe, and M.E. Lebsack, A. Pharmacother. 34, 161-164 (2000).

    Google Scholar 

  • P.E. Lacy, O.D. Hegre, A. Gerasimidi-Vazeou, F.T. Gentile, and K.E. Dionne, Science 254, 1782-1784 (1991).

    Google Scholar 

  • R.P. Lanza, J.L. Hayes, and W.L. Chick, Nat. Biotechnol. 14, 1107-1111 (1996).

    Google Scholar 

  • R.P. Lanza and W.M. Kuhtreiber, Mol. Med. Today 5, 105-106 (1999).

    Google Scholar 

  • E. Latres, D. Closa, J.M. Gomez-Sierra, M. Alemany, and X. Remesae, Arch. Int. Physiol. Biochim. Biophys. 100, 263-265 (1992).

    Google Scholar 

  • C.M. Lehr, J. Controlled Release 65, 19-29 (2000).

    Google Scholar 

  • L. Liotta and W. Stetler-Stevenson, Cancer Principles and Practice, (Lippincott, Philadelphia, 1993), 134-149.

    Google Scholar 

  • C. Morrow and K. Cowan, Cancer Principles and Practice of Oncology, (Lippincott, Philadelphia, 1993), 340-348.

    Google Scholar 

  • A.H. Nashat, M. Moronne, and M. Ferrari, Biotechnol. Bioeng. 60, 137-146 (1998).

    Google Scholar 

  • G. Ponchel and J. Irache, Adv. Drug Deliv. Rev. 34, 191-219 (1998).

    Google Scholar 

  • A.C. Powers, M. Brissova, I. Lacik, A.V. Anilkumar, K. Shahrokhi, and T.G. Wang, Ann. N. Y. Acad. Sci. 831, 208-216 (1997).

    Google Scholar 

  • S.D. Putney and P.A. Burke, Nat. Biotechnol. 16, 153-157 (1998).

    Google Scholar 

  • E. Radwanski, G. Perentesis, S. Jacobs, E. Oden, M. Affrime, S. Symchowicz, and N. Zampaglione, J. Clin. Pharmacol. 27, 432-435 (1987).

    Google Scholar 

  • Y.H. Rogers, P. Jiang-Baucom, Z.J. Huang, V. Bogdanov, S. Anderson, and M.T. Boyce-Jacino, Anal. Biochem. 266, 23-30 (1999).

    Google Scholar 

  • M. Saffran, G.S. Kumar, D.C. Neckers, J. Pena, R.H. Jones, and J.B. Field, Biochem. Soc. Trans. 18, 752-754 (1990).

    Google Scholar 

  • P. Salmon, J.Y. Le Cotonnec, A. Galazka, A. Abdul-Ahad, and A. Darragh, J. Interferon. Cytokine Res. 16, 759-764 (1996).

    Google Scholar 

  • J.P. Schouten, G. Voorhorst, A.R. Helbing, J.W. Janssen, P.P. Diderich, and C.T. Op de Hoek, Pharm. World Sci. 15, 252-256 (1993).

    Google Scholar 

  • U.I. Schwarz, T. Gramatte, J. Krappweis, R. Oertel, and W. Kirch, Int. J. Clin. Pharmacol. Ther. 38, 161-167 (2000).

    Google Scholar 

  • Am J. Shapiro, J. Lakey, E. Ryan, G. Korbutt, E. Toth, G. Warnok, N. Kneteman, and R. Rojotte. NEJM 343, 230-238 (2000).

    Google Scholar 

  • P. Soon-Shiong, M. Otterlie, G. Skjak-Braek, O. Smidsrod, R. Heintz, R.P. Lanza, and T. Espevik, Transplant Proc. 23, 758-759 (1991).

    Google Scholar 

  • J. Wang, Nucleic Acids Res. 28, 3011-3016 (2000).

    Google Scholar 

  • T. Wang, I. Lacik, M. Brissova, A.V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A.C. Powers, Nat. Biotechnol. 15, 358-362 (1997).

    Google Scholar 

  • F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, and R.K. Jain, Cancer Res. 55, 3752-3756 (1995).

    Google Scholar 

  • M. Zhang, T. Desai, and M. Ferrari, Biomaterials 19, 953-960 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, F.J., Grove, C. Microfabricated Drug Delivery Systems: Concepts to Improve Clinical Benefit. Biomedical Microdevices 3, 97–108 (2001). https://doi.org/10.1023/A:1011442024658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011442024658

Navigation