Journal of Combinatorial Optimization

, Volume 5, Issue 3, pp 287–297 | Cite as

On Approximating a Scheduling Problem

  • Pierluigi Crescenzi
  • Xiaotie Deng
  • Christos H. Papadimitriou
Article

Abstract

Given a set of communication tasks (best described in terms of a weighted bipartite graph where one set of nodes denotes the senders, the other set the receivers, edges are communication tasks, and the weight of an edge is the time required for transmission), we wish to minimize the total time required for the completion of all communication tasks assuming that tasks can be preempted (that is, each edge can be subdivided into many edges with weights adding up to the edge's original weight) and that preemption comes with a cost. In this paper, we first prove that one cannot approximate this problem within a factor smaller than \(\frac{7}{6}\) unless P=NP. It is known that a simple approximation algorithm achieves within a ratio of two (H. Choi and S.L. Hakimi, Algorithmica, vol. 3, pp. 223–245, 1988). However, our experimental results show that its performance is worse than the originally proposed heuristic algorithm (I.S. Gopal and C.K. Wong, IEEE Transactions on Communications, vol. 33, pp. 497–501, 1985). We devise a more sophisticated algorithm, called the potential function algorithm which, on the one hand, achieves a provable approximation ratio of two, and on the other hand, shows very good experimental performance. Moreover, the way in which our more sophisticated algorithm derives from the simple one, suggests a hierarchy of algorithms, all of which have a worst-case performance at most two, but which we suspect to have increasingly better performance, both in worst case and with actual instances.

parallel computation communication bipartite graph edge coloring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bongiovanni, D. Coppersmith, and C.K. Wong, “An optimal time slot assignment algorithm for an SS/TDMA system wit variable number of transponders,” IEEE Trans. on Communications, vol. 29, pp. 721-726, 1981.Google Scholar
  2. H. Choi and S.L. Hakimi, “Data transfers in networks,” Algorithmica, vol. 3, pp. 223-245, 1988.Google Scholar
  3. E.G. Coffman, Jr., M.R. Garey, D.S. Johnson, and A.S. Lapaugh, “Scheduling file transfers,” SIAM J. Comput., vol. 14, pp. 744-780, 1985.Google Scholar
  4. S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and multicommodity flow problems,” SIAM J. Comput., vol. 5, pp. 691-703, 1976.Google Scholar
  5. I.S. Gopal and C.K. Wong, “Minimizing the number of switchings in an SS/TDMA system,” IEEE Trans. on Communications, vol. 33, pp. 497-501, 1985.Google Scholar
  6. M. Goudreau, K. Lang, S.B. Rao, T. Suel, and T. Tsantilas, “Towards efficiency and portability: Programming with the BSP model,” in Proc. SPAA, pp. 1-12, 1996.Google Scholar
  7. E.L. Lawler and J. Labetoulle, “On preemptive scheduling of unrelated parallel processors by linear programming,” J. ACM, vol. 25, pp. 612-619, 1978.Google Scholar
  8. L.G. Valiant, “A bridging model for parallel computation,” Comm. ACM, vol. 33, pp. 103-111, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Pierluigi Crescenzi
    • 1
  • Xiaotie Deng
    • 2
  • Christos H. Papadimitriou
    • 3
  1. 1.Dipartimento di Sistemi e InformaticaUniversità degli Studi di FirenzeFirenzeItaly
  2. 2.Department of Computer ScienceCity University of Hong KongKowloon, Hong Kong SARChina
  3. 3.Computer Science DivisionUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations