Skip to main content
Log in

An Introduction to the Adjoint Approach to Design

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript


Optimal design methods involving the solution of an adjoint system of equations are an active area of research in computational fluid dynamics, particularly for aeronautical applications. This paper presents an introduction to the subject, emphasising the simplicity of the ideas when viewed in the context of linear algebra. Detailed discussions also include the extension to p.d.e.'s, the construction of the adjoint p.d.e. and its boundary conditions, and the physical significance of the adjoint solution. The paper concludes with examples of the use of adjoint methods for optimising the design of business jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Anderson, K., Newman, J., Whitfield, D. and Nielsen, E., Sensitivity analysis for the Navier-Stokes equations on unstructured grids using complex variables. AIAA Paper 99–3294 (1999).

  2. Anderson, W.K. and Bonhaus, D.L., Airfoil design on unstructured grids for turbulent flows. AIAA J. 37(2) (1999) 185–191.

    Google Scholar 

  3. Anderson, W.K. and Venkatakrishnan, V., Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. AIAA Paper 97–0643 (1997).

  4. Baysal, O. and Eleshaky, M.E., Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics. AIAA J. 30(3) (1992) 718–725.

    MATH  ADS  Google Scholar 

  5. Bischof, C., Carle, A., Corliss, G., Griewank, A. and Hoveland, P., ADIFOR: Generating derivative codes from Fortran programs. Scientific Programming 1(1) (1992) 11–29.

    Google Scholar 

  6. Cabuk, H., Shung, C.H. and Modi, V., Adjoint operator approach to shape design for internal incompressible flow. In: Dulikravich, G.S. (ed.), Proceedings 3rd International Conference on Inverse Design and Optimization in Engineering Sciences (1991) pp.391–404.

  7. Carle, C., Fagan, M. and Green, L.L., Preliminary results from the application of automated code generation to CFL3D. AIAA Paper 98–4807 (1998).

  8. Dadone, A. and Grossman, B., CFD design problems using progressive optimization. AIAA Paper 99–3295 (1999).

  9. Elliott, J., Aerodynamic optimization based on the Euler and Navier-Stokes equations using unstructured grids. Ph.D. Thesis, MIT, Department of Aeronautics and Astronomy (1998).

  10. Elliott, J. and Peraire, J., Aerodynamic design using unstructured meshes. AIAA Paper 96–1941 (1996).

  11. Elliott, J. and Peraire, J., Practical 3D aerodynamic design and optimization using unstructured meshes. AIAA J. 35(9) (1997) 1479–1485.

    MATH  Google Scholar 

  12. Faure, C., Splitting of algebraic expressions for automatic differentiation. In: Griewank, A. (ed.), Proceedings of the Second SIAM International Workshop on Computational Differentiation. SIAM, Philadelphia, PA (1996).

    Google Scholar 

  13. Gilbert, J., Le Vey, G. and Masse, J., La différentiation automatique de fonctions représentées par des programmes. INRIA Rapport de Recherche 1557 (1991).

  14. Giles, M.B., Analysis of the accuracy of shock-capturing in the steady quasi-1D Euler equations. Comput. Fluid Dynamics J. 5(2) (1996) 247–258.

    Google Scholar 

  15. Giles, M.B. and Pierce, N.A., Adjoint equations in CFD: Duality, boundary conditions and solution behaviour. AIAA Paper 97–1850 (1997).

  16. Giles, M.B. and Pierce, N.A., On the properties of solutions of the adjoint Euler equations. In: Baines, M. (ed.), Numerical Methods for Fluid Dynamics VI. ICFD (1998) pp.1–16.

  17. Giles, M.B. and Pierce, N.A., Improved lift and drag estimates using adjoint Euler equations. AIAA Paper 99–3293 (1999).

  18. Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization. Academic Press, New York (1981).

    MATH  Google Scholar 

  19. Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H., User's Guide for NPSOL (Version 4.0). A FORTRAN Package for Nonlinear Programming. Department of Operations Research, TR SOL86–2, Stanford University, Stanford, CA (1986).

    Google Scholar 

  20. Griewank, A., On automatic differentiation. In: Mathematical Programming '88. Kluwer Academic Publishers, Dordrecht (1989) pp.83–108.

    Google Scholar 

  21. Hicks, R.M. and Henne, P.A., Wing design by numerical optimization. J. Aircraft 15 (1978) 407–412.

    Article  Google Scholar 

  22. Huffman, W.P., Melvin, R.G., Young, D.P., Johnson, F.T., Bussoletti, J.E., Bieterman, M.B. and Himes, C.L., Practical design and optimization in computational fluid dynamics. AIAA Paper 93–3111 (1993).

  23. Newman III, J.C., Taylor III, A.C., Barnwell, R.W., Newman, P.A. and Hou, G.J.-W., Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations. J. Aircraft 36(1) (1999) 87–96.

    Google Scholar 

  24. Jameson, A., Aerodynamic design via control theory. J. Sci. Comput. 3 (1988) 233–260.

    Article  MATH  Google Scholar 

  25. Jameson, A., Optimum aerodynamic design using CFD and control theory. AIAA95–1729-CP (1995).

  26. Jameson, A., Optimum aerodynamic design using control theory. In: Hafez, M. and Oshima, K. (eds), Computational Fluid Dynamics Review, Annual Book Series. John Wiley & Sons, New York (1995) pp.495–528.

    Google Scholar 

  27. Jameson, A., Re-engineering the design process through computation. J. Aircraft 36(1) (1999) 36–50.

    Google Scholar 

  28. Jameson, A., Pierce, N.A. and Martinelli, L., Optimum aerodynamic design using the Navier-Stokes equations. AIAA Paper 97–0101 (1997).

  29. Korivi, V.M., Taylor III, A.C. and Hou, G.W., Sensitivity analysis, approximate analysis and design optimization for internal and external viscous flows. AIAA Paper 91–3083 (1991).

  30. Lewis, J. and Agarwal, R., Airfoil design via control theory using the full-potential and Euler equations. The Forum on CFD for Design and Optimization (IMECE 95), San Francisco, CA (1995).

  31. Lions, J.L., Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). Translated by S.K. Mitter.

    MATH  Google Scholar 

  32. Mohammadi, B., Optimal shape design, reverse mode of automatic differentiation and turbulence. AIAA Paper 97–0099 (1997).

  33. Mohammadi, B., Practical applications to fluid flows of automatic differentiation for design problems. VKI Lecture Series 1997–05 on Inverse Design (1997).

  34. Nielsen, E. and Anderson, W.K., Aerodynamic design optimization on unstructured meshes using the Navier-Stokes equations. AIAA Paper 98–4809 (1998).

  35. Pierce, N.A. and Giles, M.B., Adjoint recovery of superconvergent functionals from approximate solutions of partial differential equations. Technical Report NA98/18, Oxford University Computing Laboratory (1998).

  36. Pierce, N.A. and Giles, M.B., Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev., in press.

  37. Pironneau, O., On optimum design in fluid mechanics. J. Fluid Mech. 64 (1974) 97–110.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Rausch, R.D., Batina, J.T. and Yang, H.T.Y., Three-dimensional time-marching aeroelastic analyses using an unstructured-grid Euler method. AIAA J. 31(9) (1993) 1626–1633.

    Article  ADS  Google Scholar 

  39. Reuther, J. and Jameson, A., Control based airfoil design using the Euler equations. AIAA Paper 94–4272-CP (1994).

  40. Reuther, J., Jameson, A., Farmer, J., Martinelli, L. and Saunders, D., Aerodynamic shape optimization of complex aircraft configurations via an adjoint formulation. AIAA Paper 96–0094 (1996).

  41. Reuther, J., Jameson, A., Alonso, J.J., Remlinger, M.J. and Saunders, D., Constrained multipoint aerodynamic shape optimisation using and adjoint formulation and parallel computers, Part 1. J. Aircraft 36(1) (1999) 51–60.

    Google Scholar 

  42. Reuther, J., Jameson, A., Alonso, J.J., Remlinger, M.J. and Saunders, D., Constrained multipoint aerodynamic shape optimisation using and adjoint formulation and parallel computers, Part 2. J. Aircraft 36(1) (1999) 61–74.

    Google Scholar 

  43. Squire, S. and Trapp, G., Using complex variables to estimate derivatives of real functions. SIAM Rev. 40(1) (1998) 110–112.

    Article  MATH  MathSciNet  Google Scholar 

  44. Ta'asan, S., Kuruvila, G. and Salas, M.D., Aerodynamics design and optimization in one shot. AIAA Paper 92–0025 (1992).

  45. Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W., Numerical Grid Generation, Foundations and Applications. Elsevier, Amsterdam (1985).

    MATH  Google Scholar 

  46. Veditti, D. and Darmofal, D., A multilevel error estimation and grid adaptive strategy for improving the accuracy of integral outputs. AIAA Paper 99–3292 (1999).

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Giles, M.B., Pierce, N.A. An Introduction to the Adjoint Approach to Design. Flow, Turbulence and Combustion 65, 393–415 (2000).

Download citation

  • Issue Date:

  • DOI: