Skip to main content
Log in

Platform for Multi-Model Design

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper introduces a global platform for the simulation and the design of multi-model configurations. Fluid-structure interaction and optimization procedures are coupled with turbulent incompressible and compressible flow solvers in order to treat complex aerodynamics problems.

First, the equations used in modeling the fluid and the structure are presented, as well as the numerics used in the solvers. Then follows the description of our optimization framework, the gradient approximation and several optimization methods we employed.

The applications concern shape optimization for turbomachinery blades and aircraft airfoils and shape optimization coupled with aeroelasticity in aeronautics. The platform is dedicated to the treatment of realistic problems and serves as a powerful tool for design in industrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huffman, W.P., Melvin, R.G., Young, D.P., Johnson, F.T., Bussoletti, J.E., Bietermann, M.B. and Hilmes, C.L., Flux vector splitting for the inviscid practical design and optimization in computational flow dynamics. AIAA Paper 93–3111 (1993).

  2. Launder, B.E. and Spalding, D.B., Mathematical Models of Turbulence. Academic Press, New York (1972).

    Google Scholar 

  3. Lesoinne, M. and Fahrat, C., Geometric conservation laws for aeroelastic computations using unstructured dynamic meshes. AIAA Paper 95–1709 (1995).

  4. Marrocco, A., Simulations numériques dans la fabrication des circuits à semiconducteurs.

  5. Medic, G., Étude mathématique des modèles aux tensions de Reynolds et simulation numérique d'écoulements turbulents sur parois fixes et mobiles. Ph.D. Thesis, University Paris VI (1999).

  6. Medic, G. and Mohammadi, B., NSIKE unstructured solver for laminar and turbulent incompressible flows simulation. INRIA Research Report RR 3644 (1998).

  7. Medic, G., Mohammadi, B., Petruzzelli, N., Stanciu,M. and Hecht, F., 3D optimal shape design for complex flows: Application to turbomachinery. AIAA Paper 99–0833 (1999).

  8. Medic, G., Mohammadi, B., Stanciu, M. and Moreau, S., Optimal airfoil and blade design in compressible and incompressible flows. AIAA Paper 98–2898 (1998).

  9. Mohammadi, B., CFD with NSC2KE: A user guide. INRIA Research Report 164 (1994).

  10. Mohammadi, B., A new optimal shape design procedure for inviscid and viscous turbulent flows. Internat. J. Numer. Methods Fluids 25 (1997)183–203.

    Article  MATH  MathSciNet  Google Scholar 

  11. Mohammadi, B., An unified formulation for shape optimization and flow control. Internat. J. Numer. Methods Fluids (1998) submitted.

  12. Mohammadi, B., Malé, J.M. and Rostaing-Schmidt, N., Automatic differentiation in direct and reverse modes: Application to optimum shapes design in fluid mechanics. In: Proceedings of SIAM Workshop on AD, Santa Fe, U.S.A. SIAM, Philadelphia, PA (1995).

  13. Mohammadi, B. and Medic, G., A critical evaluation of the k-? model and wall-laws for separated unsteady flows. IJCFD (1997) accepted.

  14. Mohammadi, B. and Puigt, G., Generalized wall functions for high-speed flows over adiabatic and isothermal walls. IJCFD (1999) submitted.

  15. Nomura, T. and Hughes, T.J.R., An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Engrg. 33 (1994)689–723.

    Google Scholar 

  16. Petruzzelli, N. and Mohammadi, B., Incomplete sensitivities and BFGS method for 3D optimal shape design. INRIA Research Report RR 0249–6399 (1998).

  17. Roe, P.L., Approximate Riemann solvers, parameters, vectors and difference schemes. J. Comput. Phys. 43 (1981).

  18. Rostaing-Schmidt, N., Différentiation automatique: application à un problème d'optimisation en météorologie. Ph.D. Thesis, University of Nice (1993).

  19. Stanciu, M., Optimisation d'une pale de ventilateur. DEA Report (1999).

  20. Stanciu, M., Mohammadi, B., TASCOPT-A shape optimization plateform for turbomachinery applications. INRIA Research Report RR 3803 (1999).

  21. Steger, J. and Warming, R.F., Flux vector splitting for the inviscid gas dynamic withapplications to finite-difference methods. J. Comput. Phys. 40 (1983)263–293.

    Article  MathSciNet  ADS  Google Scholar 

  22. Strujis, R., Deconinck, H., de Palma, P., Roe, P. and Powel, G.G., Progress on multidimensional upwind Euler solvers for unstructured meshes. AIAA Paper 91–1550 (1991).

  23. Van Albada, G.D. and Van Leer, B., Flux splitting and Runge-Kutta methods for the Euler equations. ICASE 84–27 (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanciu, M., Mohammadi, B. Platform for Multi-Model Design. Flow, Turbulence and Combustion 65, 431–452 (2000). https://doi.org/10.1023/A:1011423714350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011423714350

Navigation