I. M. Fedorchenko, I. N. Frantsevich, I. D. Radomysel'skii, et al., Powder Metallurgy, Materials, Technology, Properties, Range of Application: Handbook [in Russian], Nauk. Dumka, Kiev (1985).
Google Scholar
I. D. Radomysel'skii, G. G. Serdyuk, N. I. Shcherban', Structural Powder Metallurgy Materials [in Russian], Tekhnika, Kiev (1985).
Google Scholar
A. F. Zhornyak and I. D. Radomysel'skii, Production of Components with Improved Properties from Powders [in Russian], GOSNIITI, Moscow (1964).
Google Scholar
I. D. Radomysel'skii, “Metal-ceramic structural components,” Poroshk. Metall., No. 10, 63-75 (1967).
V. G. Gorbach, Yu. N. Moskalenko, S. Meshashti, and S. Budeban, “Features of the diffusional saturation of porous iron with carbon,” Metalloved. Term. Obrab. Met., No. 2, 27-28 (1997).
Google Scholar
I. D. Radomysel'skii, “Structure and properties of structural sintered materials,” Poroshk. Metall., No. 4, 36-45 (1974).
Google Scholar
R. Z. Vlasyuk, Investigation of Structure Formation in the Sintering of Metal-Glass Materials [in Russian], Abstract. Dis. Kand. Tech. Nauk, Kiev (1972).
Google Scholar
I. D. Radomysel'skii and N. I. Shcherban', Powder Metallurgy Structural Materials [in Russian], O-vo “Znanie” USSR, Kiev (1983).
Google Scholar
I. D. Radomysel'skii, I. D. Martyukhin, V. M. Glazkov, and Yu. D. Novomeiskii, “Investigation of the effect of porosity on the abrasive wear of iron-manganese materials,” in: Sintered Structural Materials [in Russian], Kiev (1976), pp. 104-107.
Yu. S. Borisov, V. E. Oliker, E. A. Astakhov, et al., “Structure and properties of gas-thermal coatings of Fe —B —C and Fe —Ti —B —C alloys,” Poroshk. Metall., No. 4, 50-56 (1987).
Google Scholar
M. D. Egorov, Yu. L. Sapozhnikov, R. M. Katsel', and Yu. V. Shakhnazarov, “Investigations of the structure and properties of boron-containing alloys,” in: Composite Coatings; Tez. 3 Int. Konf., Zhitomir (1985), pp. 36-37.
I. M. Spiridonova, E. V. Sukhovaya, V. F. Butenko, et al., “Structure and properties on boron-containing iron granules for welding,” Poroshk. Metall., No. 2, 45-49 (1993).
Google Scholar
V. F. Tkachenko and Yu. I. Kogan, “Structure and mechanical properties of sintered Fe —B4C materials,” Poroshk. Metall., No. 5. 69-74 (1978).
V. F. Tkachenko, Yu. I. Kogan, and V. A. Kovalchuk, “Structural sintered materials from iron —boron carbide powder mixtures,” in: Structural Materials [in Russian], Kiev (1978).
A. K. Mashkov and V. V. Chernienko, “Production of iron boride ingot molds by the infiltration method,” in: Improving the Technology and Equipment of the Foundry Industry [in Russian], Tr. Omsk. Politekhn. In-ta, Omsk (1975), pp. 101-105.
Google Scholar
L. L. Zatynaiko, G. P. Negoda, and V. V. Chernienko, “Use of heat-resistant infiltrating alloys to strengthen sintered iron,” in: Future Developments in Combined Internal Combustion Engines and New Engines Based on New Fuels [in Russian], Tez. Dokl. Vcesoyusn. Konf., MVTU, Moscow (1987), p. 25.
Google Scholar
L. I. Tuchinskii, Composite Materials Produced by the Infiltration Method [in Russian], Metallurgiya, Moscow (1986).
Google Scholar
A. K. Mashkov, V. I. Gurdin, V. V. Chernienko, and E. P. Polyakov, “Sintered materials based on iron for the production of shape-forming components,” in: Structural Materials [in Russian], Inst. Probl. Materials Sci., Acad. Sci. Ukrainian SSR, Kiev (1977), pp. 24-29.
Google Scholar
V. V. Chernienko, M. I. Chapa, A. K. Sekrier, and Yu. G. Dorofeev, “Densification of infiltrated materials by dynamic hot pressing,” in: Increasing the Efficiency of the Die Forging Industry [in Russian], Tez. Dokl. Respub. Konf., Kishenev (1977), pp. 85-89.
Google Scholar
V. N. Eremenko, Yu. V. Naidich, and I. A. Lavrinenko, Sintering in the Presence of a Metallic Liquid Phase [in Russian], Nauk. Dumka, Kiev (1968).
Google Scholar
V. I. Tret'yakov, Principles of the Metals Science and Production Methods for Sintered Hard Alloys [in Russian], Metallurgiya, Moscow (1976).
Google Scholar
T. Kimura and A. Maima, “Method for producing high-density iron-based sintered alloys,” Pat. 3859085 USA, Publ. 07.06.72.
I. Masayuki and A. Hidstosi, “Iron-based powder metallurgy material with high density,” Application 59-16951 Japan, Publ. 01.28.84.
I. Masayuki and H. Kadzyuki, “Iron-based powder metallurgy material with high wear resistance,” Application 59-16952 Japan, Publ. 01.28.84.
I. D. Radomysel'skii and V. N. Klimenko, “Hard alloys of chromium carbide and cast iron powders,” Inform. L., Kiev (1961), No. 12.
V. I. Klimenko, V. A. Maslyuk, and Yu. V. Sambros, “Sintering, structure formation, and properties of powder metallurgy materials of the chromium carbide —iron system,” Poroshk. Metall., No. 8, 39-44 (1986).
Google Scholar
M. M. L'vovskii, “Investigation of the alloying of powder metallurgy structural materials with carbon-containing ferrochromium,” in: Sintered Structural Materials [in Russian], Inst. Probl. Materials Sci., Akad. Sci. Ukrainian SSR, (1974), pp. 115-121.
Google Scholar
P. S. Kislyi, S. N. L'vov, V. F. Nemchenko, and G. V. Samsonov, “Physical properties of the chromium boride phases,” Poroshk. Metall., No. 6, 50-53 (1962).
Google Scholar
L. F. Barshchevskaya, V. A. Maslyuk, V. N. Klimenko, and A. A. Mamonova, “Sintering of materials based on chromium boride,” Poroshk. Metall., No. 9, 34-37 (1987).
Google Scholar
O. S. Yurchenko, “Investigation of the stability of iron and nickel heated in contact with refractory compounds,” Poroshk. Metall., No. 1, 45-49 (1971).
Google Scholar
Yu. G. Guryevich, V. K. Narva, and N. R. Frage, Carbide Steels [in Russian], Metallurgiya, Moscow (1988).
Google Scholar
Ya. Kyubarsepp, Hard Alloys with a Steel Binder, Valgus-TTU, Tallin (1991).
Google Scholar
O. V. Yablokova, S. N. Kul'kov, and V. E. Panin, “Formation of interphase boundaries during the sintering of titanium carbide with Hadfield steel,” Poroshk. Metall., No. 7, 37-39 (1985).
Google Scholar
M. V. Deshpande et al., “Development of guide roller material for steel wire-rod mill,” Int. J. Refractory Metals Hard Mater., 51,No. 1-3, 151-155 (1997).
Google Scholar
J. D. Bolton and A. J. Grant, “Structure development and sintering kinetics of ceramic reinforced high speed steel,” Powder Metallurgy, 40,No. 2, 143-151 (1997).
Google Scholar
S. S. Kiparisov, V. K. Narva, L. I. Dalyaeva, et al., “Formation of the structure of titanium carbide —steel alloys during sintering. Report II,” Poroshk. Metall., No. 10, 72-76 (1976).
Google Scholar
M. Oliveira and D. Bolton, “Effect of ceramic particles on the mechanical properties of M3/2 high speed steel,” Int. J. Powder Metallurgy, 32,No. 1, 37-49 (1996).
Google Scholar
W. C. Zapata, C. E. Da Costa, and J. M. Torralba, “Wear qnd thermal behavior of M3/2 high spreed steel reinforced with NbC composites,” J. Mater. Sci., 33,No. 12, 3219-3225 (1998).
Google Scholar
J. M. Martins, M. Oliveira, and H. Carvalhinhos, “Wear resistant high speed steel matrix composites,” in: Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, NY (1992), Vol. 6, pp. 213-218.
Google Scholar
F. Ning Xiang and X. Run Ze, “Role of pores in iron based PM materials,” PM Technology, 14, No.3, 193-197 (1996).
Google Scholar
F. R. Castro et al., “Consolidation of tungsten carbide cemented with iron-manganese binder,” Metal Powder Report, 52,No. 6, 40 (1997).
Google Scholar
M. V. Deshpande et al., “Toughness cermeted carbide material with iron-rich binder for steel turning,” Int. J. Refractory Metals Hard Mater., 15,Nos. 1-3, 157-162 (1997).
Google Scholar
Yu. M. Skrynchenko, “On some principles for optimization of the compositions and use of powder metallurgy highspeed steels,” in: Powder Metallurgy High-Speed Steels [in Russian], Inst. Probl. Materials Sci., Akad. Sci. Ukrainian SSR, Kiev (1990), pp. 5-16.
Google Scholar
A. P. Gulyaev, L. P. Sergienko, and E. P. Tolkacheva, “Structure and properties of powder metallurgy high-speed steel ROM2F3-PM,” Metallov. Term. Obr. Met., No. 5, 37-43 (1985).