Skip to main content
Log in

Structural Elements in Borovanadate Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The structure of glasses in the Li2O–B2O3–V2O5and ZnO–B2O3–V2O5systems of a high modifier content ([Li2O, ZnO]/[B2O3] ratio > 1) and 10 to 50 mol % V2O5are investigated by V-KEXAFS and Raman spectroscopy. In the glasses investigated, VO4tetrahedra are the predominant coordination polyhedra for the vanadium ions. The symmetry of the tetrahedra is more or less distorted in comparison with crystalline substances. The VO4tetrahedra can be either directly connected to each other or incorporated into the borate groupings of the BO3and BO4units. An increase in the vanadium content in the glasses reduces the interconnection of structural units and, therefore, the glass transition and crystallization temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andreetti, G.D., Calestani, G., Montenero, A., and Bettinelli, M., Refinement of the Structure of ZnV2O6, Z.Kristallogr., 1984, vol. 168, pp. 53-58.

    Google Scholar 

  2. Gopal, R. and Calvo, C., Crystal Structure of α-Zn2V2O7, Can. J. Chem., 1973, vol. 51, pp. 1004-1009.

    Google Scholar 

  3. Stizza, S., Davoli, I., Gzowski, O., Murawski, L., Tomellini, M., Marcelli, A., and Bianconi, A., EXAFS and XANES Joint Analyses for Semiconducting Vanadium Phosphate Glasses, J. Non-Cryst. Solids, 1986, vol. 80, pp. 175-180.

    Google Scholar 

  4. Purans, J., Balzarotti, A., Motta, N., and Menushenkow, A., EXAFS and XANES Studies of Local Order in Oxide Glasses: Manganese Impurity Defects and Vanadium Low-Symmetry Complexes, J. Non-Cryst. Solids, 1987, vol. 94, pp. 336-344.

    Google Scholar 

  5. Muthupari, S., Prabakar, S., and Rao, K.J., Chemical Basis of the Structural Modification in Sodium Borovanadate Glasses-Thermal and Spectroscopic Studies, J.Phys. Chem. 1994, vol. 98, pp. 2646-2652.

    Google Scholar 

  6. Hayakawa, S., Yoko, T., and Sakka, S., IR and NMR Structural Studies on Lead Vanadate Glasses, J. Non-Cryst. Solids, 1995, vol. 183, pp. 73-84.

    Google Scholar 

  7. Dimitrov, V., Structural Changes in Vitreous Vanadate Systems, J. Non-Cryst. Solids, 1995, vols. vn192-193, pp. 183-186.

  8. Attos, O., Massot, M., Balkanski, M., Haro-Poniatowski, E., and Asomoza, M., Structure of Borovanadate Glasses Studied by Raman Spectroscopy, J. Non-Cryst. Solids, 1997, vol. 210, pp. 163-170.

    Google Scholar 

  9. Nabavi, M., Sanchez, C., and Livage, J., Structure and Properties of Amorphous V2O5, Philos. Mag. B., 1991, vol. 63, pp. 941-953.

    Google Scholar 

  10. Burattini, E., Purans, J., and Kuzmin, A., XAFS Study of Amorphous Octahedral Oxides, Jpn. J. Appl. Phys., Suppl., 1993, vol. 32, no. 2, pp. 655-657.

    Google Scholar 

  11. Takeda, S., Kawakita, Y., Inui, M., Maruyama, K., Tamaki, S., Sugiyama, K., and Waseda, Y., Structure and Dynamical Properties of Molten V2O5, J. Non-Cryst. Solids, 1996, vols. 205-207, pp. 151-154.

    Google Scholar 

  12. Hoppe, U., Kranold, R., and Gattev, E., An X-ray Diffraction Study of the Structure of Vitreous V2O5, Solid State Commun., 1998, vol. 108, pp. 71-76.

    Google Scholar 

  13. Hoppe, U. and Kranold, R., A Reverse Monte Carlo Study of the Structure of Vitreous V2O5, Solid State Commun., 1999, vol. 109, pp. 625-630.

    Google Scholar 

  14. Mosel, G., Hübert, Th., and Nofz, M., Röntgenabsorptionsspektroskopie (EXAFS, XANES) zur Nahordnungsstruktur von Ionen Ñbergangselemente (Zn2+, Fe3+/Fe2+, V5+, und Ti4+) in Silikat-und Boratgläsern und düunnen Schichten, in Final Report for Deutsche Forschungsgemeinschaft (DFG), 1999, pp. 1-156.

  15. ASTM D 3418-97 Standard Test Method for the Transition Temperatures of Polymers by Thermal Analysis, in Annu. Am. Soc. Test. Mater., 1999, vol. 8.02, pp. 329-332.

  16. ASTM E 794-98 Standard Test Method for Melting and Crystallization Temperature by Thermal Analysis, in Annu. Am. Soc. Test. Mater., 1999, vol. 14.02, pp. 321-324.

  17. Kamitsos, E.I., Karakassides, M.A., and Chryssikos, G.D., Vibrational Spectra of Magnesium-Sodium-Borate Glasses. Part. 2: Raman and Mid-Infrared Investigations of the Network Structure, J. Phys. Chem., 1987, vol. 91, pp. 1073-1079.

    Google Scholar 

  18. Meera, B.N. and Ramakrishna, J., Raman Spectral Studies of Borate Glasses, J. Non-Cryst. Solids, 1993, vol. 159, pp. 1-21.

    Google Scholar 

  19. Baran, E.J., Cabello, C.I., and Nord, A.G., Raman Spectra of Some M''V2O6 Brannerite-type Metavanadates, J.Raman Spectrosc., 1987, vol. 18, pp. 405-407.

    Google Scholar 

  20. Abou-el-Azm, A. and Nassar, A.M.A., Spectrophotometric and Magnetic Studies of Some Borate Glasses Containing Vanadium Oxide in Relation to Their Structure, Glass Ceram. Bull., 1969, vol. 16, pp. 67-74.

    Google Scholar 

  21. Zhonghong, J. and Yongxing, T., Study of Structural Characteristics in Some Ternary Borate Glass Systems by the Diagram Model, J. Non-Cryst. Solids, 1992, vol. 146, pp. 57-62.

    Google Scholar 

  22. Stevels, J.M., The Structure and the Physical Properties of Glass, in Handbuch der Physik, Flügge, S., Ed., Berlin: Springer, 1962, vol. 13, pp. 520-539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hübert, T., Mosel, G. & Witke, K. Structural Elements in Borovanadate Glasses. Glass Physics and Chemistry 27, 114–120 (2001). https://doi.org/10.1023/A:1011376225695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011376225695

Keywords

Navigation