Skip to main content
Log in

Mathematical Model of Compact Changes in Volume during Liquid-Phase Sintering. II

  • Published:
Journal of Materials Synthesis and Processing

Abstract

The mathematical model for the quantitative circumscription of volume changes of compacts from interacting components during liquid-phase sintering has been determined. The results of numerical calculations obtained on the basis of the created model qualitatively correlates with experimental data described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Duwer and H. Martens, Trans. AIME 185, 571–577 (1949).

    Google Scholar 

  2. J. F. Kuzmick and E. N. Mazza, J. Met. 2, 1218–1219 (1950).

    Google Scholar 

  3. S. K. Barua, P. A. Ainsworth, and D. A. Robins, Metallurgia 66, 87–91 (1969).

    Google Scholar 

  4. F. J. Esper, K. H. Friese, and R. Zeller, Intern. J. Powder Metall.5, 19–32 (1969).

    Google Scholar 

  5. M. Yoshikawa, K. Nishimoto, and T. Asaeda, J. Jpn. Soc. Precise Eng. 36, 403–408 (1970).

    Google Scholar 

  6. H. Mitani and M. Yokota, J. Jpn. Inst. Met. 34, 908–912 (1970).

    Google Scholar 

  7. F. V. Lenel and Th. Pecanha, Powder Metall.16, 351–365 (1973).

    Google Scholar 

  8. Y. Trudel and R. Anders, Intern. J. Powder Met. Powder Technol. 11, 5–16 (1975).

    Google Scholar 

  9. A. Rose and P. G. Mukunda, Powder Metall. Intern. 13, 199–202 (1981).

    Google Scholar 

  10. Sh. Kohara and K. Tatsuzawa, J. Jpn. Soc. Powder Powder Met. 30, 190–195 (1983).

    Google Scholar 

  11. B. Rieger, W. Schatt, and Ch. Sauer, Intern. Powder Met. Powder Technol. 19, 29–41 (1983).

    Google Scholar 

  12. R. M. German and K. A. D'Angelo, Intern. Met. Rev. 29, 249–272 (1984).

    Google Scholar 

  13. R. M. German and B. H. Rabin, Powder Metall. 28, 7–12 (1985).

    Google Scholar 

  14. W. H. Back and R. M. German, Powder Metall. Intern. 17, 273–279 (1985).

    Google Scholar 

  15. Y. Tsukamoto, K. Yamazaki, K. Honma, and F. Hayama, J. Jpn. Soc. Powder Powder Met. 32, 67–73 (1985).

    Google Scholar 

  16. D. S. Coleman, Powder Metall. 28, 54–57 (1985).

    Google Scholar 

  17. W. F. Wang and J. T. Lin, Intern. J. Powder Metall. 22, 141–146 (1986).

    Google Scholar 

  18. A. P. Savitskii, Liquid Phase Sintering of the Systems with Interacting Components (Tomsk, Russian Academy of Sciences, 1993), 293 p.

    Google Scholar 

  19. J. H. S. Price, C. J. Smithells, and C. V. Williams, J. Inst. Met. 62, 239–254 (1938).

    Google Scholar 

  20. F. V. Lenel, Trans. AIME 175, 878–905 (1948).

    Google Scholar 

  21. F. V. Lenel, Phys. Powder Metall. 14, 238–255 (1951).

    Google Scholar 

  22. J. Gurland and J. T. Norton, J. Met. 4, 1051–1056 (1952).

    Google Scholar 

  23. W. D. Kingery, J. Appl. Phys. 30, 301–306 (1959).

    Google Scholar 

  24. W. D. Kingery and M. D. Narasimhan, J. Appl. Phys. 30, 307–310 (1959).

    Google Scholar 

  25. J. Gurland, Trans. AIME 215, 601–608 (1959).

    Google Scholar 

  26. J. Gurland, Trans. AIME 236, 642–646 (1966).

    Google Scholar 

  27. W. J. Huppmann and H. Riegger, Acta Met. 23, 965–971 (1975).

    Google Scholar 

  28. B. Meredith and D. R. Milner, Powder Metall. 19, 38–45 (1976).

    Google Scholar 

  29. W. J. Huppmann, H. Riegger, and G. Petzow, Intern. J. Powder Metall. Powder Technol. 13, 243–247 (1977).

    Google Scholar 

  30. K. V. Sebastian and G. S. Tendolkar, Powder Metall. Intern. 11, 62–64 (1979).

    Google Scholar 

  31. M. A. Fortes, Powder Metall. Intern. 14, 96–100 (1982).

    Google Scholar 

  32. A. N. Niemi and T. H. Courtney, Acta Metall. 31, 1393–1401 (1983).

    Google Scholar 

  33. Z. Panek, Sci. Sintering 16, 13–20 (1984).

    Google Scholar 

  34. P. M. Ossi, R. Roberti, and G. Silvary, Scripta Metall. 19, 569–574 (1985).

    Google Scholar 

  35. B. A. James, Powder Metall. 28, 121–130 (1985). l

    Google Scholar 

  36. F. V. Lenel, Trans. AIME 175, 878–905 (1948). l

    Google Scholar 

  37. E. Ramasamy and P. Ramakrishnan, Trans. PMAI 7, 47–57 (1980).

    Google Scholar 

  38. T. Takahashi and M. Kato, J. Jpn. Inst. Light Met. 29, 431–436 (1979).

    Google Scholar 

  39. O. V. Lapshin, V. E. Ovcharenko, A. P. Savitskii, J. Phys. Khim. Obr. Matr. pp. 77–80 (1999).

  40. O. V. Lapshin, A. P. Savitskii, V. E. Ovcharenko, J. Mater. Synthesis Process. to be published.

  41. R. W. Cahn, ed. Physical Metallurgy Chaps. VI–XII, XXII (North-Holland Publ., Amsterdam, 1965), 490 p.

    Google Scholar 

  42. A. A. Samarskii, Theory of Difference Scheme (Nauka, Moscow, 1977), 656 p. (in Russian).

    Google Scholar 

  43. I. P. Dobrovolskii and B. A. Kartashkin, Proc. Physical-Chemical Investigations in Metallurgy and Materials Science with Use of Computers (Nauka, Moscow, 1974), pp. 29–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Savitskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapshin, O., Savitskii, A. & Ovcharenko, V. Mathematical Model of Compact Changes in Volume during Liquid-Phase Sintering. II. Journal of Materials Synthesis and Processing 9, 83–92 (2001). https://doi.org/10.1023/A:1011360408837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011360408837

Navigation