Skip to main content
Log in

Light Penetration through a Tapered Waveguide

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

An approximate pattern of calculation of the field behavior in waveguides of variable radius is proposed. It is based on the assumption of a slow dependence of the radius on the longitudinal coordinate and is reduced to the solution of an ordinary differential equation. The dependences of the waveguide transmission on the frequency of radiation, entrance and exit radii, as well as the rate of radius variation along the axis are studied. The analysis is carried out within the range of parameters typical for optical fibers used in optical near‐field microscopy. It is shown that the increase in the rate of radius variation with the longitudinal coordinate will cause the transmission coefficient of the tapered waveguide to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Synge, Philos. Mag., 6, 356 (1928).

    Google Scholar 

  2. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett., 44, 651 (1994).

    Article  ADS  Google Scholar 

  3. A. Lewis, M. Isaacson, A. Harootunian, and M. Murray, Ultramicroscopy, 13, 227 (1984).

    Article  Google Scholar 

  4. E. Betzig, J. K. Trautman, T. D. Harris, et al., Science, 251, 1468 (1991).

    ADS  Google Scholar 

  5. A. J. Meixner, D. Zeisel, M. A. Bopp, and G. Tarrach, Opt. Eng., 34, 2324 (1995).

    Article  ADS  Google Scholar 

  6. M. Tang, S. M. Cai, and Z. F. Liu, Opt. Commun., 146, 21 (1998).

    Article  ADS  Google Scholar 

  7. S. T. Jung, D. J. Shin, and Y. H. Lee, Appl. Phys. Lett., 77, 2638 (2000).

    Article  ADS  Google Scholar 

  8. A. Harootunian, E. Betzig, M. S. Isaacson, and A. Lewis, Appl. Phys. Lett., 49, 674 (1986).

    Article  ADS  Google Scholar 

  9. A. Lewis, U. Ben-Ami, N. Kuck, et al., Scanning, 17, 3 (1995).

    Article  Google Scholar 

  10. A. V. Bragas, S. M. Landi, and O. E. Martinez, Appl. Phys. Lett., 72, 2075 (1998).

    Article  ADS  Google Scholar 

  11. L. Aigouy, A. Lahrech, S. Gresillon, et al., Opt. Lett., 24, 187 (1999).

    ADS  Google Scholar 

  12. L. A. Vainstein, Electromagnetic Waves [in Russian], Radio i Svyaz', Moscow (1988).

    Google Scholar 

  13. V. V. Klimov and Ya. A. Perventsev, Quantum Électron., 29, 847 (1999).

    Article  ADS  Google Scholar 

  14. V. S. Zuev and T. I. Kuznetsova, Kvantovaya Électron., 24, 462 (1997).

    Google Scholar 

  15. K. Rawer, Ann. Physik., 35, 385 (1939); ibid., 42, 294 (1942).

    MATH  ADS  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, Oxford (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, T.I., Lebedev, V.S. Light Penetration through a Tapered Waveguide. J Russ Laser Res 22, 123–138 (2001). https://doi.org/10.1023/A:1011355905164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011355905164

Keywords

Navigation