Skip to main content
Log in

Synthesis and Sintering of Nanocrystalline Barium Titanate Powder under Non-Isothermal Conditions. Part 6. Structure, Grain Boundaries, and Dielectric Properties of Barium Titanate Obtained by Various Sintering Methods

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The grain boundary structure of barium titanate obtained by controlled-rate sintering and high-pressure sintering (HPS), and the dependence of dielectric properties on grain size and consolidation method were studied. It was shown that sintering without the application of pressure leads to a diffusion-controlled formation of equilibrium grain boundaries with minimal impedance factor, which minimally decrease the dielectric constant of the ceramics. HPS results in the formation of non-equilibrium grain boundaries which have a large free volume, and which substantially decrease the dielectric constant. The Curie-Weiss constant was analyzed from the viewpoint of a matrix structural model, and a «brick-wall» model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Arlt, D. Hennings, and G. DeWith, “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys.,58,No. 4, 1619-1625 (1985).

    Google Scholar 

  2. X. Li and W. H. Shih, “Size effect in barium titanate particles and clusters,” J. Amer. Ceram. Soc., 80,No. 11, 2844-2852 (1997).

    Google Scholar 

  3. K. Uchino, E. Sadanaga, and T. Hirose, “Dependence of crystal structure on particle size in barium titanate,” J. Amer.Ceram. Soc., 72,No. 8, 1555-1558 (1989).

    Google Scholar 

  4. B. D. Begg, E. R. Vance, and J. Nowotny, “Effect of particle size on the room-temperature crystal structure of barium titanate,” J. Amer. Ceram. Soc., 77,No. 12, 3186-3192 (1994).

    Google Scholar 

  5. E. K. Akdogan, W. Mayo, A. Safari, et al., “Structure-property relations in mesoscopic BaTiO3 and PbTiO3,”Ferroelectrics, 223, 11-18 (1999).

    Google Scholar 

  6. Y. G. Wang, W. L. Zhong, and P. L. Zhang, “Size driven transition in ferroelectric particles,” Solid State Comm., 90,No. 5, 329-332 (1994).

    Google Scholar 

  7. M. H. Frey, “Grain size effect on structure and properties for chemically prepared barium titanate,” Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1996.

  8. D. McCauley, R. E. Newnham, and C. A. Randall, “Intrinsic size effect in a barium titanate glass ceramic,” J. Amer. Ceram. Soc., 81, No.4, 979-987 (1998).

    Google Scholar 

  9. J. C. Niepce, “Some aspects of the influence of particle size on properties and behavior of dielectric material: Example of barium titanate,” in: Surface and Interface of Ceramic Materials, L. C. Dufour, C. Monty, and G. Petot-Ervas (eds.), Kluwer, Dordrecht, 1989. NATO-ASI Series, Series E: Applied Sciences, 173, 521-533.

    Google Scholar 

  10. T. Takeuchi, K. Ado, T. Asia, et al., “Thickness of cubic surface phase on barium titanate single-crystal grains,” J. Amer. Ceram. Soc., 77,No. 6, 1665-1668 (1994).

    Google Scholar 

  11. D. A. Payne and L. E. Cross, “Microstructure-property relations for dielectric ceramics. II. The brick-wall model of the polycrystalline microstructure,” in: Microstructure and Properties of Ceramic Materials, T. S. Yen and J. A. Pask (eds.), Beijing Science Press, 1984.

  12. M. P. McNeal, S. J. Jang, and R. E. Newnham, “The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3),” J. Appl. Phys., 83,No.3, 3288-3297 (1998).

    Google Scholar 

  13. W. Y. Shih, W. H. Shih, and I. A. Aksay, “Size dependence of the ferroelectric transition of small BaTiO3 particles: effect of depolarization,” Phys. Rev. B, 50,No. 21, 15575-15585 (1994).

    Google Scholar 

  14. R. Waser, “Grain boundaries —the functional heart of electronic ceramics,” in: Third Euro-Ceramics, P. Duran and J. F. Fernandes (eds.), Vol. 2 (1998), pp.23-28.

  15. A. I. Bykov, A. V. Polotai, A. V. Ragulya, and V. V. Skorokhod, “Synthesis and sintering of nanocrystalline barium titanate powder under non-isothermal conditions. V. Non-isothermal sintering of barium titanium powders of various dispersions,” Poroshk. Metall., Nos. 7-8, 88-98 (2000).

  16. A. V. Ragulya, O. O. Vasyl'kiv, and V. V. Skorokhod, “Synthesis and sintering of nanocrystalline barium titanate powder under non-isothermal conditions. I. Controlling the degree of dispersion of barium titanate during its synthesis from barium-titanium oxalate,” Poroshk. Metall., Nos. 3-4, 59-65 (1997).

  17. O. O. Vasyl'kiv, A. V. Ragulya, and V. V. Skorokhod, “Synthesis and sintering of nanocrystalline barium titanate powder under non-isothermal conditions. II. Phase analysis of decomposition products for barium titanyl-oxalate and synthesis products for barium titanate,” Poroshk. Metall., Nos. 5-6, 53-59 (1997).

  18. O. O. Vasyl'kiv, A. V. Ragulya, V. P. Klimenko, and V. V. Skorokhod, “Synthesis and sintering of nanocrystalline barium titanate powder under non-isothermal conditions. III. Chromatographic analysis of the decomposition products of barium titanyl-oxalate,” Poroshk. Metall., Nos. 11-12, 11-15 (1997).

  19. A. V. Ragulya, O. O. Vasyl'kiv, and V. V. Skorokhod, “Synthesis and sintering of nanocrystalline barium titanate powder under non-isothermal conditions. IV. Electron microscopic study of the morphological evolution of barium titanate powder,” Poroshk. Metall., Nos. 3-4, 12-20 (1998).

  20. A. V. Ragulya, “Rate controlled synthesis and sintering of nanocrystalline barium titanate powder,” Nanocrystalline Mater., 10,No. 3, 349-356 (1998).

    Google Scholar 

  21. H. Jang, D. Frakas, J. T. M. De Hosson, “Determination of grain-boundary geometry using TEM,” J. Mater. Res., 7,No. 7, 1707-1717 (1992).

    Google Scholar 

  22. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals [in Russian], Metallurgiya, Moscow (1987).

  23. H. Gleiter, “Nanostructured materials: basic concept and microstructure,” Acta Mater., 48, 1-29 (2000).

    Google Scholar 

  24. Y. Ishida, H. Ichinosi, T. Kizuka, and K. Suenaga, “High-resolution electron microscopy of interfaces in nanocrystalline materials,” Nanostructured Mater., 6,No. 1-4, 115-124 (1995).

    Google Scholar 

  25. P. Mullner and W. M. Kriven, “On the role of deformation twinning in domain reorganization and grain reorientation in ferroelastic crystals,” J. Mater. Res., 12,No. 7, 1771-1776 (1997).

    Google Scholar 

  26. Q. Tan and D. Viehland, “Influence of thermal and elastic histories on domain structure and polarization switching in potassium-modified lead zirconate titanate ceramics,” J. Amer. Ceram. Soc., 81,No. 2, 328-336 (1998).

    Google Scholar 

  27. K. Kinoshita and A. Yamaji, “Grain size effects on dielectric properties in barium titanate ceramics,” J. Appl. Phys., 47, 371-379 (1976).

    Google Scholar 

  28. M. H. Frey and D. A. Payne, “Grain size effect on structure and phase transformations of barium titanate,” Phys. Rev. B, 54, 3158-3168 (1996).

    Google Scholar 

  29. V. V. Skorokhod, “Theory of physical properties,” Poroshk. Metall., Nos. 1-2, 53-71 (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragulya, A.V., Skorokhod, V.V. Synthesis and Sintering of Nanocrystalline Barium Titanate Powder under Non-Isothermal Conditions. Part 6. Structure, Grain Boundaries, and Dielectric Properties of Barium Titanate Obtained by Various Sintering Methods. Powder Metallurgy and Metal Ceramics 40, 25–33 (2001). https://doi.org/10.1023/A:1011347519938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011347519938

Navigation