Skip to main content
Log in

Influence of the linking chain length on the recombination kinetics of covalently bonded triplet radical pairs and magnetic field effects

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Nanosecond laser flash photolysis technique is used to study the formation and decay kinetics of covalently linked triplet radical pairs (RP) formed after photoinduced electron transfer in the series of 21 zinc porphyrin—chain—viologen (Pph—Spn—Vi2+) dyads, where the number of atoms (n) in the chain increases from 2 to 138. In poorly viscous polar solvents (acetone, CHCl3—CH3OH (1 : 1) mixture), the dependence of the rate constant of RP formation on n can be described by the equation k e = k e 0 n –a at k e 0 = 2.95·108 s–1 anda = 0.8. In the zero magnetic field, the RP recombination rate constant (k r(B = 0)) is significantly lower than k e and ranges from 0.7·106 to 8·106 s–1. The dependence of k r(B = 0) on n is extreme. The dependence k r(B = 0) reaches a maximum at n = 20. In the strong magnetic field (B = 0.21 T), the significant retardation of triplet RP recombination is observed. The chain length has an insignificant effect on k r(B = 0.21 T), which ranges from 0.3·106 to 0.9·106 s–1. The regularities found are discussed in terms of the interplay of molecular and spin dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Buchachenko, R. Z. Sagdeev, and K. M. Salikhov, Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh [Magnetic and Spin Effects in Chemical Reactions], Nauka, Novosibirsk, 1978, 296 pp. (in Russian).

    Google Scholar 

  2. A. L. Buchachenko, Usp. Khim., 1993, 62, 1139 [Russ. Chem. Rev., 1993, 62, 921 (Engl. Transl.)].

    Google Scholar 

  3. C. Doubleday, Jr., N. J. Turro, and J.-F. Wang, Acc. Chem. Res., 1989, 22, 199.

    Google Scholar 

  4. U. E. Steiner and T. Ulrich, Chem. Rev., 1989, 89, 51.

    Google Scholar 

  5. K. Schulten and R. Bittl, J. Chem. Phys., 1986, 84, 5155.

    Google Scholar 

  6. R. Bittl and K. Schulten, J. Chem. Phys. 1989, 90, 1794.

    Google Scholar 

  7. M. Zimmt, C. Doubleday, Jr., I. Gould, and N. J. Turro, J. Am. Chem. Soc., 1985, 107, 6724.

    Google Scholar 

  8. J.-P. Wang, C. Doubleday, Jr., and N. J. Turro, J. Am. Chem. Soc., 1989, 111, 3962.

    Google Scholar 

  9. H. Nakamura, A. Uehata, N. Motonaga, T. Ogata, and T. Matsuo, Chem. Lett., 1987, 543.

  10. V. Ya. Shafirovich, E. E. Batova, and P. P. Levin, J. Chem. Soc., Faraday Trans., 1992, 88, 935.

    Google Scholar 

  11. Y. Tanimoto, N. Hasegawa, N. Okada, M. Itoh, K. Iwai, K. Sugioka, F. Takemura, R. Nakagaki, and S. Nagakura, J. Phys. Chem., 1989, 93, 3586.

    Google Scholar 

  12. Y. Tanimoto, N. Okada, S. Takamatsu, and M. Itoh, Bull. Chem. Soc. Jpn., 1990, 63, 1342.

    Google Scholar 

  13. P. P. Levin, V. Ya. Shafirovich, E. E. Batova, and V. A. Kuzmin, Chem. Phys. Lett., 1994, 228, 357.

    Google Scholar 

  14. Y. Tanimoto, N. Samejima, T. Tamura, and M. Hayashi, Chem. Phys. Lett., 1992, 188, 446.

    Google Scholar 

  15. P. P. Levin, V. Ya. Shafirovich, and E. E. Batova, Chem. Phys., 1990, 142, 279.

    Google Scholar 

  16. V. Ya. Shafirovich, E. E. Batova, and P. P. Levin, J. Phys. Chem., 1993, 97, 4877.

    Google Scholar 

  17. V. Ya. Shafirovich, E. E. Batova, and P. P. Levin, Z. Phys. Chem., 1993, 182, 245.

    Google Scholar 

  18. M. Winnik, Chem. Rev., 1981, 81, 491.

    Google Scholar 

  19. M. Winnik, Acc. Chem. Res., 1985, 18, 73.

    Google Scholar 

  20. M. Zimmt, C. Doubleday, Jr., and N. J. Turro, J. Am. Chem. Soc., 1986, 108, 3618.

    Google Scholar 

  21. V. Ya. Shafirovich, E. E. Batova, and P. P. Levin, Chem. Phys., 1992, 162, 155.

    Google Scholar 

  22. P. P. Levin, P. F. Pluzhnikov, and V. A. Kuzmin, Chem. Phys. Letters, 1988, 147, 283.

    Google Scholar 

  23. E. E. Batova and V. Ya. Shafirovich, Dokl. Akad. Nauk SSSR, 1989, 307, 1131 [Dokl. Chem., 1989 (Engl. Transl.)].

    Google Scholar 

  24. R. N. Stabler and J. Chesick, Int. J. Chem. Kinet., 1978, 10, 461.

    Google Scholar 

  25. V. Ya. Shafirovich, E. Amouyal, and J. Delaire, Chem. Phys. Letters, 1991, 178, 24.

    Google Scholar 

  26. L. Perkkarinen and H. Linshitz, J. Am. Chem. Soc., 1960, 82, 2407.

    Google Scholar 

  27. H. Nakamura, S. Usui, Y. Matsuda, T. Matsuo, K. Maeda, and T. Azumi, Chem. Letters, 1987, 543.

  28. Y. Kanda, H. Sato, and N. Mataga, Chem. Phys. Letters, 1986, 129, 306.

    Google Scholar 

  29. J. A. Nairn and C. L. Braun, J. Chem. Phys., 1981, 74, 2441.

    Google Scholar 

  30. J. A. Nairn, C. L. Braun, P. Caluwe, and M. Szwarc, Chem. Phys. Letters, 1978, 54, 469.

    Google Scholar 

  31. T. Kanaya, K. Goshiki, M. Yamamoto, and Y. Nishijima, J. Am. Chem. Soc., 1982, 104, 3580.

    Google Scholar 

  32. A. E. C. Redpath, M. Winnik, J. Chem. Soc., 1980, 6871.

  33. G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield, and J. R. Miller, J. Phys. Chem., 1986, 90, 3673.

    Google Scholar 

  34. R. J. Cave, P. Siders, and R. A. Marcus, J. Phys. Chem., 1986, 90, 1436.

    Google Scholar 

  35. M. Sisido, Macromolecules, 1971, 4, 737.

    Google Scholar 

  36. M. A. Winnik, R. E. Trueman, G. Jackowski, D. S. Saunders, and S. G. Whittington, J. Am. Chem. Soc., 1974, 96, 4843.

    Google Scholar 

  37. H. Hayshi and S. Nagakura, Bull. Chem. Soc. Jpn., 1984, 57, 322.

    Google Scholar 

  38. K. Schulten and P. G. Wolynes, J. Chem. Phys., 1978, 68, 3292.

    Google Scholar 

  39. A. Weller, H. Staerk, and R. Treichel, Faraday Discuss. Chem. Soc., 1984, 78, 271.

    Google Scholar 

  40. P. P. Levin, V. Ya. Shafirovich, and V. A. Kuzmin, J. Phys. Chem., 1992, 96, 10044.

    Google Scholar 

  41. F. DeKanter, J. den Hollander, A. Huizer, and R. Kaptein, Mol. Phys., 1977, 34, 857.

    Google Scholar 

  42. V. F. Tarasov, N. D. Ghatlia, N. I. Avdievich, I. A. Shkrob, A. L. Buchachenko, and N. J. Turro, J. Am. Chem. Soc., 1994, 116, 2281.

    Google Scholar 

  43. J. Faier, D. C. Borg, A. Forman, D. Dolphin, and R. H. Felton, J. Am. Chem. Soc., 1970, 92, 3451.

    Google Scholar 

  44. C. S. Johnson and H. S. Gutowski, J. Chem. Phys., 1963, 39, 58.

    Google Scholar 

  45. E. D. German and V. N. Kuznetsov, in Itogi Nauki i Tekhniki. Ser. Kinetika i Kataliz [Results of Science and Technique, Div. Kinet. Catal.], VINITI, Moscow, 1982, 10, 115 (in Russian).

    Google Scholar 

  46. V. E. Maier, V. A. Kuz'min, P. P. Levin, N. K. Khannanov, and V. Ya. Shafirovich, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 276 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 212 (Engl. Transl.)].

  47. I. V. Khudyakov, Yu. A. Serebrennikov, and N. J. Turro, Chem. Rev., 1993, 93, 537.

    Google Scholar 

  48. G. L. Closs and M. D. E. Forbes, J. Phys. Chem., 1991, 95, 1924.

    Google Scholar 

  49. G. L. Closs, M. D. E. Forbes, and P. Piotrowiak, J. Am. Chem. Soc., 1992, 114, 3285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafirovich, V.Y., Levin, P.P. Influence of the linking chain length on the recombination kinetics of covalently bonded triplet radical pairs and magnetic field effects. Russian Chemical Bulletin 50, 599–606 (2001). https://doi.org/10.1023/A:1011340223743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011340223743

Navigation