Skip to main content
Log in

Induction of cell death by adenoviruses

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Adenoviruses have proved to be excellent tools for gaining insight into the regulation, and deregulation, of the mammalian cell cycle. With the widespread clinical use of gene therapy fast approaching, there comes a need for a better understanding of how the cell death process is regulated. A greater understanding will allow the development of therapeutic approaches that both maximise transgene expression while minimising cytotoxicity to the target cell. Consequently, much adenovirus research has centered on understanding the mechanisms governing adenovirus induced cell death or apoptosis. This review discusses recent advances in the field of adenovirus cell death regulation and evaluates the roles of implicated gene products and their respective data. The data suggest the existence of multiple virus gene products involved in cell death regulation and point towards several distinct, yet related, cell death pathways. A discussion of the shortcomings of current adenoviral research, along with a proposed model based upon the data is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr J, Wyllie A, Currie A. Apoptosis, basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-257.

    Google Scholar 

  2. Horwitz MS. Adenoviruses. In: Fields B, et al., ed. Virology. Philadelphia: Lippincott-Raven 1996: 2149-2172.

    Google Scholar 

  3. Shenk T. Adenoviridae: The viruses and their replication. In: Fields B. et al., ed. Virology. Philadelphia: Lippincott-Raven 1996: 2111-2148.

    Google Scholar 

  4. Boulanger P, Blair GE. Expression and interactions of human adenovirus oncoproteins. Biochem J 1991; 275: 281-299.

    Google Scholar 

  5. Braithwaite A, Nelson C, Bellett A. E1a revisited: The case for multiple cooperative transactivation domains. The New Biologist 1991; 3: 18-26.

    Google Scholar 

  6. Jones N, Shenk T. Isolation of deletion and substitution mutants of adenovirus type 5. Cell 1978; 13: 181-188.

    Google Scholar 

  7. Cress WD, Nevins JR. Use of the E2F transcription factor by DNA tumor virus regulatory proteins. Curr Top Microbiol Immunol 1996; 208: 63-78.

    Google Scholar 

  8. Bates S, Phillips AC, Clark PA, et al. p14ARF links the tumour suppressors Rb and p53. Nature 1998; 395: 124-125.

    Google Scholar 

  9. Duro D, Bernard O, Della Valle V, Berger R, Larsen CJ. A new type of p16INK4/MTS1 gene transcript expressed in B-cell malignancies. Oncogene 1995; 11: 21-29.

    Google Scholar 

  10. Mao L, Merlo A, Bedi G, et al. A novel p16INK4A transcript. Cancer Res 1995; 55: 2995-2997.

    Google Scholar 

  11. Chin L, Pomerantz J, DePinho RA. The INK4a/ARF tumor suppressor: one gene-two products-two pathways. Trends Biochem Sci 1998; 23: 291-296.

    Google Scholar 

  12. Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. The INK4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 1998; 92: 713-723.

    Google Scholar 

  13. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar ARF sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1: 20-26.

    Google Scholar 

  14. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299-303.

    Google Scholar 

  15. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296-299.

    Google Scholar 

  16. Prives C, Hall PA. The p53 pathway. J Pathol 1999; 187: 112-126.

    Google Scholar 

  17. Barbeau D, Charbonneau R, Whalen SG, Bayley ST, Branton PE. Functional interactions within adenovirus E1A protein complexes. Oncogene 1994; 9: 359-373.

    Google Scholar 

  18. Giordano A, Lee JH, Scheppler JA, et al. Cell cycle regulation of histone H1 kinase activity associated with the adenoviral protein E1A. Science 1991; 253: 1271-1275.

    Google Scholar 

  19. Putzer B, Stiewe T, Parssanedjad K, Rega S, Esche H. E1a is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products. Cell Death Differ 2000; 7: 177-188.

    Google Scholar 

  20. Querido E, Teodoro JG, Branton PE. Accumulation of p53 induced by the adenovirus E1A protein requires regions involved in the stimulation of DNA synthesis. J Virol 1997; 71: 3526-3533.

    Google Scholar 

  21. Liu HT, Baserga R, Mercer WE. Adenovirus type 2 activates cell cycle-dependent genes that are a subset of those activated by serum. Mol Cell Biol 1985; 5: 2936-2942.

    Google Scholar 

  22. Braithwaite A, Nelson C, Skulimowski A, McGovern J, Pigott D, Jenkins J. Transactivation of the p53 oncogene by E1a gene products. Virology 1990; 177: 595-605.

    Google Scholar 

  23. Hale TK, Braithwaite AW. The adenovirus oncoprotein E1a stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene. J Biol Chem 1999; 274: 23777-23786.

    Google Scholar 

  24. Hale TK, Myers C, Maitra R, Kolzau T, Nishizawa M, Braithwaite AW. Maf transcriptionally activates the mouse p53 promoter and causes a p53-dependent cell death. J Biol Chem 2000; 275: 17991-17999.

    Google Scholar 

  25. Marcellus RC, Teodoro JG, Wu T, et al. Adenovirus type 5 early region 4 is responsible for E1A-induced p53-independent apoptosis. J Virol 1996; 70: 6207-6215.

    Google Scholar 

  26. Teodoro JG, Shore GC, Branton PE. Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms. Oncogene 1995; 11: 467-474.

    Google Scholar 

  27. Dix BR, O'Carroll SJ, Myers CJ, Edwards SJ, Braithwaite AW. Efficient induction of cell death by adenoviruses requires binding of E1B55k and p53. Cancer Res 2000; 60: 2666-2672.

    Google Scholar 

  28. Lillie JW, Green MR. Transcription activation by the adenovirus E1a protein. Nature 1989; 338: 39-44.

    Google Scholar 

  29. Martin KJ, Lillie JW, Green MR. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature 1990; 346: 147-152.

    Google Scholar 

  30. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996; 87: 953-959.

    Google Scholar 

  31. Bannister A, Kouzarides T. CBP-induced stimulation of c-Fos activity is abrogated by E1a. EMBO J 1998; 14: 4758-4762.

    Google Scholar 

  32. Wu X, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 1994; 91: 3602-3606.

    Google Scholar 

  33. Qin XQ, Livingston DM, Kaelin WG, Jr., Adams PD. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994; 91: 10918-10922.

    Google Scholar 

  34. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 1997; 94: 7245-7250.

    Google Scholar 

  35. Chiou S, White E. p300 binding by E1a cosegregates with p53 induction but is dispensable for apoptosis. J Virol 1997; 71: 3515-3525.

    Google Scholar 

  36. Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science 1998; 281: 1322-1326.

    Google Scholar 

  37. Chiou SK, Tseng CC, Rao L, White E. Functional complementation of the adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells. J Virol 1994; 68: 6553-6566.

    Google Scholar 

  38. Subramanian T, Tarodi B, Chinnadurai G. p53-independent apoptotic and necrotic cell deaths induced by adenovirus infection: Suppression by E1B 19K and Bcl-2 proteins. Cell Growth Differ 1995; 6: 131-137.

    Google Scholar 

  39. Boyd JM, Malstrom S, Subramanian T, et al. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 1994; 79: 341-351.

    Google Scholar 

  40. Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 1992; 89: 7742-7746.

    Google Scholar 

  41. Hansen RS, Braithwaite AW. The growth-inhibitory function of p53 is separable from transactivation, apoptosis and suppression of transformation by E1a and Ras. Oncogene 1996; 13: 995-1007.

    Google Scholar 

  42. Takemori N, Riggs J, Alldrich C. Genetic studies with tumorigenic adenoviruses.1. Isolation of cytocidal (cyt) mutants of adenovirus type 12. Virology 1968; 36: 575-586.

    Google Scholar 

  43. Subramanian T, Kuppuswamy M, Gysbers J, Mak S, Chinnadurai G. 19kDa tumor antigen encoded by early region 1b of adenovirus 2 is required for efficient synthesis and protection of viral DNA. J Biol Chem 1984; 259: 11777-11783.

    Google Scholar 

  44. Pilder S, Logan J, Shenk T. Deletion of the gene encoding adenovirus 5 early region 1B 21,000-molecular weight polypeptide leads to degradation of viral and cellular DNA. J Virol 1984; 52: 664-671.

    Google Scholar 

  45. White E, Grodzicker T, Stillman B. Mutations in the gene encoding the adenovirus 5 early region 1B 19k tumor antigen causes degradation of chromosomal DNA. J Virol 1984; 52: 410-419.

    Google Scholar 

  46. Marcellus R, Teodoro J, Charbonneau R, Shore G, Branton P. Expression of p53 in Saos-2 osteosarcoma cells induces apoptosis which can be inhibited by Bcl-2 or the Adenovirus E1b55kDa protein. Cell Growth Differ 1996; 7: 1643-1650.

    Google Scholar 

  47. White E, Sabbatini P, Debbas M, Wold W, Kusher D, Gooding L. The 19-Kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumour necrosis factor ?. Mol Cell Biol 1992; 12: 2570-2580.

    Google Scholar 

  48. Debbas M, White E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 1993; 7: 546-554.

    Google Scholar 

  49. Strasser A, Harris A, Jacks T, Cory S. DNAdamage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2. Cell 1994; 79: 329-339.

    Google Scholar 

  50. Routes JM, Ryan S, Clase A, et al. Adenovirus E1A oncogene expression in tumor cells enhances killing by TNF-related apoptosis-inducing ligand (TRAIL). J Immunol 2000; 165: 4522-4527.

    Google Scholar 

  51. Pilder S, Moore M, Logan J, Shenk T. The adenovirus E1B-58K transforming polypeptide modulates transport or cytoplasmic stabilization of viral host cell mRNAs. Mol Cell Biochem 1986; 6: 470-476.

    Google Scholar 

  52. Babiss L, GinsbergH, Darnell J. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 1985; 5: 2552-2558.

    Google Scholar 

  53. Kratzer F, Rosorius O, Heger P, et al. The adenovirus type 5 E1B-55K oncoprotein is a highly active shuttle protein and shuttling is independent of E4orf6, p53 and Mdm2. Oncogene 2000; 19: 850-857.

    Google Scholar 

  54. Gorlich D. Nuclear protein import. Curr Opin Cell Biol 1997; 9: 412-419.

    Google Scholar 

  55. Gorlich D. Transport into and out of the cell nucleus. EMBO J 1998; 17: 2721-2727.

    Google Scholar 

  56. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, Zur Hausen H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumour cells. J Virol 1998; 72: 9470-9478.

    Google Scholar 

  57. Goodrum FD, Shenk T, Ornelles DA. Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J Virol 1996; 70: 6323-6335.

    Google Scholar 

  58. Sarnow P, Hearing P, Anderson CW, Halbert DN, Shenk T, Levine AJ. Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol 1984; 49: 692-700.

    Google Scholar 

  59. Grand RJ, Grant ML, Gallimore PH. Enhanced expression of p53 in human cells infected with mutant adenoviruses. Virology 1994; 203: 229-240.

    Google Scholar 

  60. Dobner T, Horikoshi N, Rubenwolf S, Shenk T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 1996; 272: 1470-1473.

    Google Scholar 

  61. Yew PR, Berk AJ. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 1992; 357: 82-85.

    Google Scholar 

  62. Yew PR, Liu X, Berk AJ. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 1994; 8: 190-202.

    Google Scholar 

  63. Ridgway PJ, Soussi T, Braithwaite AW. Functional characterization of Xenopus laevis p53: Evidence of temperaturesensitive transactivation but not of repression. J Virol 1994; 68: 7178-7187.

    Google Scholar 

  64. Martin ME, Berk AJ. Adenovirus E1B 55K represses p53 activation in vitro. J Virol 1998; 72: 3146-3154.

    Google Scholar 

  65. Ridgway PJ, Hall AR, Myers CJ, Braithwaite AW. p53/E1b58kDa complex regulates adenovirus replication. Virology 1997; 237: 404-413.

    Google Scholar 

  66. Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL. The large E1B protein together with the E4ORF6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 1998; 16: 349-357.

    Google Scholar 

  67. Dobbelstein M, Roth J, Kimberly WT, Levine AJ, Shenk T. Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J 1997; 16: 4276-4284.

    Google Scholar 

  68. Teodoro JG, Branton PE. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol 1997; 71: 3620-3627.

    Google Scholar 

  69. Goodrum FD, Ornelles DA. p53 status does not determine outcome of E1b 55-kilodalton mutant adenovirus lytic infection. J Virol 1998; 72: 9479-9490.

    Google Scholar 

  70. Turnell AS, Grand RJ, Gallimore PH. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 1999; 73: 2074-2083.

    Google Scholar 

  71. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumour cells. Science 1996; 274: 373-376.

    Google Scholar 

  72. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879-885.

    Google Scholar 

  73. Nemunaitis J, Ganly I, Khuri F, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000; 60: 6359-6366.

    Google Scholar 

  74. Freyer GA, Katoh Y, Roberts RJ. Characterization of the major mRNAs from adenovirus 2 early region 4 by cDNA cloning and sequencing. Nucleic Acids Res 1984; 12: 3503-3519.

    Google Scholar 

  75. Virtanen A, Gilardi P, Naslund A, LeMoullec JM, Pettersson U, Perricaudet M. mRNAs from human adenovirus 2 early region 4. J Virol 1984; 51: 822-831.

    Google Scholar 

  76. Gingeras TR, Sciaky D, Gelinas RE, et al. Nucleotide sequences from the adenovirus-2 genome. J Biol Chem 1982; 257: 13475-13491.

    Google Scholar 

  77. Herisse J, Rigolet M, de Dinechin SD, Galibert F. Nucleotide sequence of adenovirus 2 DNA fragment encoding for the carboxylic region of the fiber protein and the entire E4 region. Nucleic Acids Res 1981; 9: 4023-4042.

    Google Scholar 

  78. Berk AJ, Sharp PA. Structure of the adenovirus 2 early mRNAs. Cell 1978; 14: 695-711.

    Google Scholar 

  79. Chow LT, Broker TR, Lewis JB. Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 1979; 134: 265-303.

    Google Scholar 

  80. Tigges MA, Raskas HJ. Splice junctions in adenovirus 2 early region 4 mRNAs: Multiple splice sites produce 18 to 24 RNAs. J Virol 1984; 50: 106-117.

    Google Scholar 

  81. Leppard KN. E4 gene function in adenovirus, adenovirus vector and adeno-associated virus infections. J Gen Virol 1997; 78: 2131-2138.

    Google Scholar 

  82. Bridge E, Ketner G. Redundant control of adenovirus late gene expression by early region 4. J Virol 1989; 63: 631-638.

    Google Scholar 

  83. Kleinberger T, Shenk T. Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J Virol 1993; 67: 7556-7560.

    Google Scholar 

  84. Muller U, Kleinberger T, Shenk T. Adenovirus E4orf4 protein reduces phosphorylation of c-Fos and E1A proteins while simultaneously reducing the level of AP-1. J Virol 1992; 66: 5867-5878.

    Google Scholar 

  85. Kanopka A, Muhlemann O, Petersen-Mahrt S, Estmer C, Ohrmalm C, Akusjarvi G. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 1998; 393: 185-187.

    Google Scholar 

  86. Lavoie JN, Nguyen M, Marcellus RC, Branton PE, Shore GC. E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Cell Biol 1998; 140: 637-645.

    Google Scholar 

  87. Marcellus RC, Lavoie JN, Boivin D, Shore GC, Ketner G, Branton PE. The early region 4 ORF4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J Virol 1998; 72: 7144-7153.

    Google Scholar 

  88. Shtrichman R, Kleinberger T. Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J Virol 1998; 72: 2975-2982.

    Google Scholar 

  89. Shtrichman R, Sharf R, Barr H, Dobner T, Kleinberger T. Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc Natl Acad Sci USA 1999; 96: 10080-10085.

    Google Scholar 

  90. Livne A, Shtrichman R, Kleinberger T. Caspase activation by adenovirus e4orf4 protein is cell line specific and is mediated by the death receptor pathway. J Virol 2001; 75: 789-798.

    Google Scholar 

  91. Okamoto K, Kamibayashi C, Serrano M, Prives C, Mumby MC, Beach D. p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A. Mol Cell Biol 1996; 16: 6593-6602.

    Google Scholar 

  92. Yan Y, Shay JW, Wright WE, Mumby MC. Inhibition of protein phosphatase activity induces p53-dependent apoptosis in the absence of p53 transactivation. J Biol Chem 1997; 272: 15220-15226.

    Google Scholar 

  93. Mills JC, Lee VM, Pittman RN. Activation of a PP2A-like phosphatase and dephosphorylation of tau protein characterize onset of the execution phase of apoptosis. J Cell Sci 1998; 111: 625-636.

    Google Scholar 

  94. Ruvolo PP, Deng X, Ito T, Carr BK, May WS. Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 1999; 274: 20296-20300.

    Google Scholar 

  95. Boyer JL, Ketner G. Genetic analysis of a potential zincbinding domain of the adenovirus E4 34k protein. J Biol Chem 2000; 275: 14969-14978.

    Google Scholar 

  96. Weigel S, Dobbelstein M. The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA. J Virol 2000; 74: 764-772.

    Google Scholar 

  97. Nevels M, Spruss T, Wolf H, Dobner T. The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene 1999; 18: 9-17.

    Google Scholar 

  98. Moore M, Horikoshi N, Shenk T. Oncogenic potential of the adenovirus E4orf6 protein. Proc Natl Acad Sci USA 1996; 93: 11295-11301.

    Google Scholar 

  99. Bridge E, Ketner G. Interaction of adenoviral E4 and E1b products in late gene expression. Virology 1990; 174: 345-353.

    Google Scholar 

  100. Leppard K, Shenk T. The adenovirus E1B 55kd protein in-fluences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J 1989; 8: 2329-2336.

    Google Scholar 

  101. Ornelles DA, Shenk T. Localization of the adenovirus early region 1B 55-kilodalton protein during lytic infection: Association with nuclear viral inclusions requires the early region 4 34-kilodalton protein. J Virol 1991; 65: 424-429.

    Google Scholar 

  102. Rabino C, Aspegren A, Corbin-Lickfett K, Bridge E. Adenovirus late gene expression does not require a Rev-like nuclear RNA export pathway. J Virol 2000; 74: 6684-6688.

    Google Scholar 

  103. Querido E, Marcellus RC, Lai A, et al. Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirusinfected cells. J Virol 1997; 71: 3788-3798.

    Google Scholar 

  104. Neill SD, Hemstrom C, Virtanen A, Nevins JR. An adenovirus E4 gene product trans-activates E2 transcription and stimulates stable E2F binding through a direct association with E2F. Proc Natl Acad Sci USA 1990; 87: 2008-2012.

    Google Scholar 

  105. Huang MM, Hearing P. The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev 1989; 3: 1699-1710.

    Google Scholar 

  106. Marton MJ, Baim SB, Ornelles DA, Shenk T. The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating E1A-independent accumulation of E2 mRNA. J Virol 1990; 64: 2345-2359.

    Google Scholar 

  107. Nevins JR. E2F: A link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992; 258: 424-429.

    Google Scholar 

  108. Obert S, O'Connor RJ, Schmid S, Hearing P. The adenovirus E4-6/7 protein transactivates the E2 promoter by inducing dimerization of a heteromeric E2F complex. Mol Cell Biol 1994; 14: 1333-1346.

    Google Scholar 

  109. Raychaudhuri P, Bagchi S, Neill SD, Nevins JR. Activation of the E2F transcription factor in adenovirus-infected cells involves E1A-dependent stimulation of DNA-binding activity and induction of cooperative binding mediated by an E4 gene product. J Virol 1990; 64: 2702-2710.

    Google Scholar 

  110. Cress WD, Nevins JR. Interacting domains of E2F1, DP1, and the adenovirus E4 protein. J Virol 1994; 68: 4213-4219.

    Google Scholar 

  111. Kowalik TF, DeGregori J, Schwarz JK, Nevins JR. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol 1995; 69: 2491-2500.

    Google Scholar 

  112. Yamano S, Tokino T, Yasuda M, et al. Induction of transformation and p53-dependent apoptosis by adenovirus type 5 E4orf6/7 cDNA. J Virol 1999; 73: 10095-10103.

    Google Scholar 

  113. Tollefson AE, Wold WS. Identification and gene mapping of a 14,700-molecular-weight protein encoded by region E3 of group C adenoviruses. J Virol 1988; 62: 33-39.

    Google Scholar 

  114. Kelly TJ, Lewis AM. Use of nondefective adenovirus-simian virus 40 hybrids for mapping the simian virus 40 genome. J Virol 1973; 12: 643-652.

    Google Scholar 

  115. Ginsberg HS, Lundholm-Beauchamp U, Horswood RL, et al. Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci USA 1989; 86: 3823-3827.

    Google Scholar 

  116. Gooding LR, Elmore LW, Tollefson AE, Brady HA, Wold WS. A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 1988; 53: 341-346.

    Google Scholar 

  117. Krajcsi P, Dimitrov T, Hermiston TW, et al. The adenovirus E3-14.7K protein and the E3-10.4K/14.5K complex of proteins, which independently inhibit tumor necrosis factor (TNF)-induced apoptosis, also independently inhibit TNFinduced release of arachidonic acid. J Virol 1996; 70: 4904-4913.

    Google Scholar 

  118. Dimitrov T, Krajcsi P, Hermiston TW, Tollefson AE, Hannink M, Wold WS. Adenovirus E3-10.4K/14.5K protein complex inhibits tumor necrosis factor-induced translocation of cytosolic phospholipase A2 to membranes. J Virol 1997; 71: 2830-2837.

    Google Scholar 

  119. Hayakawa M, Ishida N, Takeuchi K, et al. Arachidonic acidselective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J Biol Chem 1993; 268: 11290-11295.

    Google Scholar 

  120. Shisler J, Yang C, Walter B, Ware CF, Gooding LR. The adenovirus E3-10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J Virol 1997; 71: 8299-8306.

    Google Scholar 

  121. Chen P, Tian J, Kovesdi I, Bruder JT. Interaction of the adenovirus 14.7-kDa protein with FLICE inhibits Fas ligandinduced apoptosis. J Biol Chem 1998; 273: 5815-5820.

    Google Scholar 

  122. Zhang XL, Bellett AJ, Hla RT, Braithwaite AW, Mullbacher A. Adenovirus type 5 E3 gene products interfere with the expression of the cytolytic T cell immunodominant E1a antigen. Virology 1991; 180: 199-206.

    Google Scholar 

  123. Burgert HG, Kvist S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 1985; 41: 987-997.

    Google Scholar 

  124. Zhang X, Bellett AJ, Hla RT, Voss T, Mullbacher A, Braithwaite AW. Down-regulation of human adenovirus E1a by E3 gene products: Evidence for translational control of E1a by E3 14.5K and/or E3 10.4K products. J Gen Virol 1994; 75: 1943-1951.

    Google Scholar 

  125. Paabo S, Bhat BM, Wold WS, Peterson PA. A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 1987; 50: 311-317.

    Google Scholar 

  126. Kvist S, Ostberg L, Persson H, Philipson L, Peterson PA. Molecular association between transplantation antigens and cell surface antigen in adenovirus-transformed cell line. Proc Natl Acad Sci USA 1978; 75: 5674-5678.

    Google Scholar 

  127. Signas C, Katze MG, Persson H, Philipson L. An adenovirus glycoprotein binds heavy chains of class I transplantation antigens from man and mouse. Nature 1982; 299: 175-178.

    Google Scholar 

  128. Kampe O, Bellgrau D, Hammerling U, et al. Complex formation of class I transplantation antigens and a viral glycoprotein. J Biol Chem 1983; 258: 10594-10598.

    Google Scholar 

  129. Tanaka Y, Tevethia SS. Differential effect of adenovirus 2 E3/19K glycoprotein on the expression of H-2Kb and H-2Db class I antigens and H-2Kb-and H-2Db-restricted SV40-specific CTL-mediated lysis. Virology 1988; 165: 357-366.

    Google Scholar 

  130. Tollefson AE, Ryerse JS, Scaria A, Hermiston TW, Wold WS. The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: Characterization of cells infected with adp mutants. Virology 1996; 220: 152-162.

    Google Scholar 

  131. Scaria A, Tollefson AE, Saha SK, Wold WS. The E3-11.6K protein of adenovirus is an Asn-glycosylated integral membrane protein that localizes to the nuclear membrane. Virology 1992; 191: 743-753.

    Google Scholar 

  132. Tollefson AE, Scaria A, Saha SK, Wold WS. The 11,600-MW protein encoded by region E3 of adenovirus is expressed early but is greatly amplified at late stages of infection. J Virol 1992; 66: 3633-3642.

    Google Scholar 

  133. Tollefson AE, Scaria A, Hermiston TW, Ryerse JS, Wold LJ, Wold WSM. The adenovirus death protein (E3-11.6k) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol 1996; 70: 2296-2306.

    Google Scholar 

  134. Philipson L, Lindberg U. Reproduction of adenoviruses. In: Fraenkel-Conrat H, Wagner R, ed. Comprehensive virology. New York: Plenum Press 1974: 143-228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braithwaite, A.W., Russell, I.A. Induction of cell death by adenoviruses. Apoptosis 6, 359–370 (2001). https://doi.org/10.1023/A:1011338119712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011338119712

Navigation