Skip to main content
Log in

Early decrease of survival signal-related proteins in spinal motor neurons of presymptomatic transgenic mice with a mutant SOD1 gene

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The mechanisms of motor neuronal death in amyotrophic lateral sclerosis (ALS) remain to be unclear. Phosphatidy-linositol 3-kinase (PI3-K) and its main downstream effector, Akt/protein kinase B (PKB) have been shown to play a central role in neuronal survival against apoptosis supported by neurotrophic factors. In order to investigate a possible impairment of survival signaling, we examined expressions of PI3-K and Akt in the spinal cord of the transgenic mice overexpressing a mutant Cu/Zn superoxide dismutase (SOD1) gene, a valuable model for human ALS. Immunoblotting and immunohistochemical analyses showed that the majority of spinal motor neurons lost the immunoreactivities for both PI3-K and Akt in the early and presymptomatic stage that preceded significant loss of the neurons. The present results suggest that an early decrease of survival signal proteins in the spinal motor neurons may account for the subsequent motor neuronal loss in this animal model of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng HX, Hentati A, Tainer JA, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 1993; 261: 1047-1051.

    Google Scholar 

  2. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 364: 59-62.

    Google Scholar 

  3. Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994; 264: 1772-1775.

    Google Scholar 

  4. Wong PC, Pardo CA, Borchelt DR, et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14: 1105-1116.

    Google Scholar 

  5. Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW. Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 1995; 92: 689-693.

    Google Scholar 

  6. Dal Canto MC, Gurney ME. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 1994; 145: 1271-1279.

    Google Scholar 

  7. Dal Canto MC, Gurney ME. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: A model of familial amyotrophic lateral sclerosis (FALS). Brain Res 1995; 676: 25-40.

    Google Scholar 

  8. Sasaki S, Ohsawa Y, Yamane K, et al. Familial amyotrophic lateral sclerosis with widespread vacuolation and hyaline inclusions. Neurology 1998; 51: 871-873.

    Google Scholar 

  9. Dal Canto MC, Gurney ME. A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta Neuropathol (Berl) 1997; 93: 537-550.

    Google Scholar 

  10. The BDNF Study Group B. A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology 1999; 52: 1427-1433.

    Google Scholar 

  11. ALS CNTF Treatment Study Group. A double-blind placebocontrolled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. Neurology 1996; 46: 1244-1249.

    Google Scholar 

  12. Mitsumoto H, Ikeda K, Holmlund T, et al. The effects of ciliary neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann Neurol 1994; 36: 142-148.

    Google Scholar 

  13. Mitsumoto H, Ikeda K, Klinkosz B, et al. Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 1994; 265: 1107-1110.

    Google Scholar 

  14. Crowder RJ, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J. Neurosci 1998; 18: 2933-2943.

    Google Scholar 

  15. Dudek H, Datta SR, Franke, TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997; 275: 661-665.

    Google Scholar 

  16. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231-241.

    Google Scholar 

  17. Philpott KL, McCarthy MJ, Klippel A, Rubin LL. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol 1997; 139: 809-815.

    Google Scholar 

  18. Whitman M, Downes CP, Keeler M, Keller T, Cantley L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332: 644-646.

    Google Scholar 

  19. Stokoe D, Stephens LR, Copeland T, et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 1997; 277: 567-570.

    Google Scholar 

  20. Klippel A, Escobedo MA, Wachowicz MS, et al. Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol Cell Biol 1998; 18: 5699-5711.

    Google Scholar 

  21. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 1997; 385: 544-548.

    Google Scholar 

  22. Kennedy SG, Wagner AJ, Conzen SD, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 1997; 11: 701-713.

    Google Scholar 

  23. Zhou H, Summers SA, Birnbaum MJ, Pittman RN. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 1998; 273: 16568-16575.

    Google Scholar 

  24. Shimoke K, Yamagishi S, Yamada M, Ikeuchi T, Hatanaka H. Inhibition of phosphatidylinositol 3-kinase activity elevates c-Jun N-terminal kinase activity in apoptosis of cultured cerebellar granule neurons. Brain Res Dev Brain Res 1999; 112: 245-253.

    Google Scholar 

  25. Abe K, Morita S, Kikuchi T, Itoyama Y. Protective effect of a novel free radical scavenger, OPC-14117, on wobbler mouse motor neuron disease. J Neurosci Res 1997; 48: 63-70.

    Google Scholar 

  26. Hayashi T, Abe K, Suzuki H, Itoyama Y. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 1997; 28: 2039-2044.

    Google Scholar 

  27. Warita H, Itoyama Y, Abe K. Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene. Brain Res 1999; 819: 120-131.

    Google Scholar 

  28. Tanaka K, Horiguchi K, Yoshida T, et al. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J Biol Chem 1999; 274: 3919-3922.

    Google Scholar 

  29. Neri LM, Milani D, Bertolaso L, et al. Nuclear translocation of phosphatidylinositol 3-kinase in rat pheochromocytoma PC 12 cells after treatment with nerve growth factor. Cell Mol Biol (Noisy-le-grand) 1994; 40: 619-626.

    Google Scholar 

  30. Wagey R, Pelech SL, Duronio V, Krieger C. Phosphatidylinositol 3-kinase: Increased activity and protein level in amyotrophic lateral sclerosis. J Neurochem 1998; 71: 716-722.

    Google Scholar 

  31. Ferrante RJ, Browne SE, Shinobu LA, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 1997; 69: 2064-2074.

    Google Scholar 

  32. Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature 1993; 364: 584.

    Google Scholar 

  33. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitriteinduced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991; 288: 481-487.

    Google Scholar 

  34. Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992; 298: 431-437.

    Google Scholar 

  35. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991; 266: 4244-4250.

    Google Scholar 

  36. Estevez AG, Radi R, Barbeito L, et al. Peroxynitrite-induced cytotoxicity in PC12 cells: Evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J Neurochem 1995; 65: 1543-1550.

    Google Scholar 

  37. Abe K, Pan LH, Watanabe M, Kato T, Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett 1995; 199: 152-154.

    Google Scholar 

  38. Ferrante RJ, Shinobu LA, Schulz JB, et al. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 1997; 42: 326-334.

    Google Scholar 

  39. Li X, De Sarno P, Song L, Beckman JS, Jope RS. Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signalling in human neuroblastoma SH-SY5Y cells: Attenuated effects in human 1321N1 astrocytoma cells. Biochem J 1998; 331: 599-606.

    Google Scholar 

  40. Hellberg CB, Boggs SE, Lapetina EG. Phosphatidylinositol 3-kinase is a target for protein tyrosine nitration. Biochem Biophys Res Commun 1998; 252: 313-317.

    Google Scholar 

  41. Heck S, Lezoualc'h F, Engert S, Behl C. Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB. J Biol Chem 1999; 274: 9828-9835.

    Google Scholar 

  42. Skaper SD, Floreani M, Negro A, Facci L, Giusti P. Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: Selective involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway. J Neurochem 1998; 70: 1859-1868.

    Google Scholar 

  43. Mu X, He J, Anderson DW, Trojanowski JQ, Springer JE. Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann Neurol 1996; 40: 379-386.

    Google Scholar 

  44. Migheli A, Piva R, Atzori C, Troost D, Schiffer D. c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1997; 56: 1314-1322.

    Google Scholar 

  45. Martin LJ. Neuronal death in amyotrophic lateral sclerosis is apoptosis: Possible contribution of a programmed cell death mechanism. J Neuropathol Exp Neurol 1999; 58: 459-471.

    Google Scholar 

  46. Kostic V, Jackson-Lewis V, de Bilbao F, Dubois-Dauphin M, Przedborski S. Bcl-2: Prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997; 277: 559-562.

    Google Scholar 

  47. Friedlander RM, Brown RH, Gagliardini V, Wang J, Yuan J. Inhibition of ICE slows ALS in mice. Nature 1997; 388: 31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warita, H., Manabe, Y., Murakami, T. et al. Early decrease of survival signal-related proteins in spinal motor neurons of presymptomatic transgenic mice with a mutant SOD1 gene. Apoptosis 6, 345–352 (2001). https://doi.org/10.1023/A:1011334018804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011334018804

Navigation