Skip to main content
Log in

Highly-Workable Alumina-Base Ceramics

  • Published:
Refractories and Industrial Ceramics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. N. Claussen, “Strengthening strategies for ZrO2-toughened ceramics at high temperatures,” Mater. Sci. Eng., 71, 23–38 (1985).

    Google Scholar 

  2. F. Trubelja and V. Stubican, “Phase equilibria and ordering in the system zirconia-hafnia-yttria,” J. Am. Ceram. Soc., 71(8), 662–666 (1988).

    Google Scholar 

  3. P. Duran, M. Gonzales, C. Moure, et al., “A new tentative phase equilibrium diagram for the ZrO2 – CeO2 system in air,” J. Mater. Sci. Lett., 12(12), 5001–5006 (1990).

    Google Scholar 

  4. J. Wang, X. H. Zheng, and R. Stevens, “Fabrication and microstructure-mechanical property relationships in Ce – TZP,” J. Mater. Sci. Lett., 27(19), 5348–5356 (1992).

    Google Scholar 

  5. E. R. Buttler, “Transformation-toughened zirconia ceramics,” Mater. Sci. Technol., 1(6), 417–433 (1985).

    Google Scholar 

  6. R. C. Garvie, R. H. J. Mannik, and P. T. Pascoc, Ceramic Steel, Nature, London (1974).

    Google Scholar 

  7. C. J. Howard, E. H. Kisi, R. B. Roberts, and R. J. Hill, “Neutron diffraction studies of phase transformations between tetragonal and orthorhombic zirconia,” J. Am. Ceram. Soc., 73(10), 2828–2833 (1990).

    Google Scholar 

  8. R. M. Dickerson and A. H. Heuer, “Precipitate morphology in ternary MgO, CaO-partially stabilized zirconia,” J. Am. Ceram. Soc., 76(4), 833–840 (1993).

    Google Scholar 

  9. G. T. Robertson, “Engineering applications of transformation-toughened magnesia partially stabilized zirconia,” Br. Ceram. Soc., No. 46, 151–156 (1990).

    Google Scholar 

  10. K. Goto, K. Hiroto, O. Yamguchi, et al., “Formation and sintering of 75 mol.% alumina/25 mol.% zirconia (3.5 mol.% yttria) composite powder prepared by the hydrazine method,” J. Mater. Sci., 31(1), 204–208 (1996).

    Google Scholar 

  11. D. Basu, A. D. Gupta, M. K. Basu, and B. K. Sarcar, “Aging of zirconia-toughened alumina ceramics under different hydrothermal conditions,” J. Eur. Ceram. Soc., No. 16, 613–614 (1996).

    Google Scholar 

  12. E. Tani, M. Yoshimura, and S. Somiya, “Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions,” J. Am. Ceram. Soc., 66(1), 11–13 (1983).

    Google Scholar 

  13. A. V. Shevchenko, A. K. Ruban, E. V. Dudnik, and V. A. Mel'-nikova, “Hydrothermal synthesis of ultradisperse zirconia powders,” Poroshk. Metall., No. 7/8, 74–80 (1997).

    Google Scholar 

  14. S. Somiya and T. Akiba, “Hydrothermal zirconia powders: A bibliography,” J. Eur. Ceram. Soc., 19, 81–87 (1999).

    Google Scholar 

  15. A. V. Shevchenko, E. V. Dudnik, A. K. Ruban, and L. M. Lopato, “Slip casting of multilayer ceramic materials from nanocrystalline powders in the system ZrO2 – Y2O3 – CeO2 – Al2O3,” in: L. Pariläk and H. Danninger (eds.), Proc. Int. Conf. DF PM'99, Sept. 19 – 22, 1999, PieSt'any, IMR SAS Kosice, Slovak Republic, pp. 169–172.

    Google Scholar 

  16. A. G. Evans and E. A. Charles, “Fracture toughness determinations by indentation,” J. Am. Ceram. Soc., 59(7), 371–372 (1976).

    Google Scholar 

  17. Niihara, R. Morena, and D. P. H. Hasselman, “Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios,” J. Mater. Sci. Lett., 1(1), 13–16 (1982).

    Google Scholar 

  18. D. K. Shetty, A. R. Rosenfield, and W. H. Duckworth, “Indenter flow geometry and fracture toughness for a glass-ceramic,” J. Am. Ceram. Soc., 68(10), 282–284 (1983).

    Google Scholar 

  19. J. Kishino, A. Nishigama, and T. Sakuma, “Mechanical properties of sinter-forged Al2O3 – ZrO2 ceramics,” J. Mater. Sci., 31(5), 4991–4995 (1996).

    Google Scholar 

  20. A. J. Burgraaf, “Stuijts Memorial Lecture 1991,” Some New Develop. Ceram. Sci. Technol., 9(4), 245–250 (1992).

    Google Scholar 

  21. D. C. Hague and M. J. Mayo, “Modeling densification during sinter-forging of yttria-partially-stabilized zirconia,” Mater. Sci. Eng., A204, 83–89 (1995).

    Google Scholar 

  22. D. C. Hague and M. J. Mayo, “Sinter-forging of nanocrystalline zirconia: I. Experimental,” J. Am. Ceram. Soc., 80(1), 149–156 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, A.V., Ruban, A.K. & Dudnik, E.V. Highly-Workable Alumina-Base Ceramics. Refractories and Industrial Ceramics 41, 289–294 (2000). https://doi.org/10.1023/A:1011333732325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011333732325

Keywords

Navigation