Skip to main content
Log in

Electronic Structure of Quasicrystals and Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure of quasicrystals (Al86Mn14and Al65Cu20Fe15) and glasses (Fe80B20) is calculated by the self-consistent recursion method within the TB–LMTO–ASA formalism. The method is tested using comparative calculations of body-centered cubic (bcc) iron in real and reciprocal spaces. The computational technique applied makes it possible to take into account the covalent character of bonds and the local environment of each atom. The recursion method does not require translational invariance and can be used for any close-packed structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Metallic Phase with Long-Range Orientational Order and Translational Symmetry, Phys. Rev. Lett., 1984, vol. 53, pp. 1951-1953.

    Google Scholar 

  2. Dunneau, M. and Kaz, A., Quasiperiodic Patterns, Phys. Rev. Lett., 1985, vol. 54, pp. 2688-2692.

    Google Scholar 

  3. Kalugin, P.A., Kitaev, Yu.A., and Levitov, L.S., Al86Mn14―A Six-Dimensional Crystal, Pis'ma Zh. Eksp. Teor. Fiz., 1985, vol. 41, pp. 119-121.

    Google Scholar 

  4. Haydock, R., The Recursion Solution of the Schrödinger Equation, in Solid State Physics, Setz, F. and Turnbull, D., Eds., New York: Academic, 1980, vol. 35, pp. 213-294.

    Google Scholar 

  5. Beer, N. and Pettifor, D., in The Electronic Structure of Complex Systems, Phariseau, P. and Tammerman, W.M., Eds., New York: Plenum, 1983.

    Google Scholar 

  6. Nex, C.M.M., The Recursion Method Processing the Continued Fraction, Comput. Phys. Commun., 1984, vol. 34, pp. 101-122.

    Google Scholar 

  7. Andersen, O.K., Jepsen, O., and Glotzal, D., in Highlights of Condensed-Matter Theory, Bassani, F., Funi, F., and Tossi, M.P., Eds., Amsterdam: North-Holland, 1985, pp. 59-176.

    Google Scholar 

  8. Andersen, O.K., in The Electronic Structure of Complex Systems, Phariseau, P. and Tammerman, W.M., Eds., New York: Plenum, 1983.

    Google Scholar 

  9. Andersen, O.K. and Jepsen, O., Explicit First-Principles Tight-Binding Theory, Phys. Rev. Lett., 1984, vol. 53, pp. 2571-2574.

    Google Scholar 

  10. Andersen, K., Pavlovska, Z., and Jepsen, O., Illustration of the Linear-Muffin-Tin-Orbitals Tight-Binding Representation: Compact Orbitals and Charge Density in Si, Phys. Rev. B: Condens. Matter, 1986, vol. 34, no. 8, pp. 5253-5269.

    Google Scholar 

  11. Nowak, H.J., Andersen, O.K., Fujiwara, T., and Jepsen, O., Electronic Structure Calculations for Amorphous Solids Using the Recursion Method and Linear Muffin-Tin Orbitals: Application to Fe80B20, Phys. Rev. B: Condens. Matter, 1991, vol. 44, no. 8, pp. 3577-3598.

    Google Scholar 

  12. Bath, U. and Hedin, L., A Local Exchange-Correlation Potential for the Sp in Polarized Case, J. Phys.: Condens. Matter, 1972, vol. 5, no. 13, pp. 1629-1642.

    Google Scholar 

  13. Vanderbilt, D. and Louie, S.G., Total Energy of Diamond (111) Surface Reconstruction by a Linear Combination of Atomic Orbitals Method, Phys. Rev. B: Condens. Matter, 1984, vol. 30, pp. 6118-6129.

    Google Scholar 

  14. Mitrokhin, Yu.S., Real-Space Self-Consistent Calculations of Electronic Structure of Clusters by the Recursion Method: RS-LMTO-ASA Software Package, in Klasternye sistemy i materialy (Cluster Systems and Materials), Izhevsk, 1997, pp. 185-197.

  15. Krier, G., Jepsen, O., Burkhardt, A., and Andersen, O.K., TB-LMTO-ASA Guide, Stuttgart, 1995.

  16. Audier, M. and Guyot, P., Al4Mn Quasicrystal Atomic Structure, Diffraction Data, and Penrose Tilling, Philos. Mag. B, 1986, vol. 53, pp. L43-L51.

    Google Scholar 

  17. Elser, V. and Henley, C.L., Crystal and Quasicrystal Structure in Al-Mn-Si Alloys, Phys. Rev. Lett., 1983, vol. 55, no. 26, pp. 2883-2886.

    Google Scholar 

  18. Sodac, A. and Dubous, J.M., Structure Relationship between Non-Crystalline Phases in AlMn and AlCuFe System through EXAFS Measurements, J. Phys.: Condens. Matter, 1989, vol. 1, no. 27, pp. 4283-4296.

    Google Scholar 

  19. Dankhazi, Z. et al., Theoretical and Experimental Electronic Structures in Al6Mn, J. Phys.: Condens. Matter, 1993, vol. 5, pp. 3339-3349.

    Google Scholar 

  20. Fujiwara, T., Electronic Structure in Quasicrystals, J.Non-Cryst. Solids, 1993, vols. 153-154, pp. 390-393.

    Google Scholar 

  21. Belin, E. and Traverse, A., Al 3p Electronic Distributions in Al-Mn Crystalline, Quasicrystalline, and Amorphous Alloys, J. Phys.: Condens. Matter, 1991, vol. 3, pp. 2157-2162.

    Google Scholar 

  22. Laissardiere, G.T. et al., Experimental and Theoretical Electronic Distributions in Al-Cu Based Alloys, Phys. Rev. B: Condens. Matter, 1995, vol. 51, no. 20, pp. 14035-14047.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrokhin, Y.S. Electronic Structure of Quasicrystals and Glasses. Glass Physics and Chemistry 27, 121–127 (2001). https://doi.org/10.1023/A:1011328309765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011328309765

Keywords

Navigation