Skip to main content
Log in

Self-Propagating Reactions in the Ti–Si System: A SHS-MASHS Comparative Study

  • Published:
Journal of Materials Synthesis and Processing

Abstract

In this work, we report on the self-propagating reaction in Ti–Si blends, observed by SHS and MASHS (mechanical activated SHS) techniques. In spite of the differences between the two reacting methods, correlations were found between the key parameters of the two modes of activation. Moreover, this comparative study enabled us to gain some hints on the reaction mechanism. The combustive behavior of powder mixtures with stoichiometries corresponding to the intermetallics present in the Ti–Si phase diagram (TiSi2, TiSi, Ti5Si4, and Ti5Si3) was studied. The SHS characteristics, such as combustion temperature, propagation rate, and ignition temperature was strongly dependent on both the initial stoichiometry and milling time. Particular attention was paid to the influence of the initial stoichiometry and milling conditions on the reaction mechanism. A single-step dissolution-precipitation mechanism was found for the composition Ti : Si = 5 : 3. On the other hand, at the composition Ti : Si = 1 : 2, the mechanism shows two steps, the first, active at the leading front of the combustion front, involving only solid phases, and the second, active in the afterburn region, involving solid–liquid interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Veltl, B. Sholtz, and H. D. Kunze, in New Materials by Mechanical Alloying Techniques, E. Arzt and L. Shultz, eds. (DGM Informationsgesellschaft, Oberursel, 1989), p. 79.

    Google Scholar 

  2. J. H. Ahn, H. S. Chung, R. Watanabe, and Y. H. Park, Mater. Sci. Forum 88–90, 347 (1992).

  3. T. Yamasaky, Y. Ogino, K. Morishita, K. Fukuoka, T. Atou, and Y. Syono, Mater. Sci. Eng. A179–A180, 220 (1994).

    Google Scholar 

  4. Z. H. Yan, M. Oehring, and R. Bormann, J. Appl. Phys. 72, 2483 (1992).

    Google Scholar 

  5. M. Oehring, Z. H. Yan, T. Klassen, and R. Bormann, Phys. Stat. Sol. 131, 671 (1992).

    Google Scholar 

  6. Y. H. Park and H. Hashimoto, Mater. Sci. Eng. A181–A182, 1212 (1994).

    Google Scholar 

  7. A. P. Radinskly and A. Calka, Mater. Sci. Eng. A134, 1376 (1991).

    Google Scholar 

  8. B. K. Yen, J. Appl. Phys. 81, 7061 (1997).

    Google Scholar 

  9. B. K. Yen and T. Aizawa, J. Amer. Ceram. Soc. 81, 1953 (1998).

    Google Scholar 

  10. A. S. Rogachev, V. A. Shugaev, I. O. Khomenko, A. Varma, and C. R. Kachelmyer, Combust. Sci. Technol. 109, 53 (1995).

    Google Scholar 

  11. J. Trambukis and Z. A. Munir, J. Amer. Ceram. Soc. 73, 1240 (1990).

    Google Scholar 

  12. L. L. Wang and Z. A. Munir, Metall. Mater. Trans. 26B, 595 (1995).

    Google Scholar 

  13. CHR. G. Tschakarov, G. G. Gospodinov, and Z. Bontschev, J. Solid State Chem. 41, 244 (1982).

    Google Scholar 

  14. G. B. Shaffer and P. G. McCormick, Scripta Metall. 23, 835 (1989).

    Google Scholar 

  15. M. Atzmon, Phys. Rev. Lett. 64, 487 (1990).

    Google Scholar 

  16. A. A. Popovich, V. P. Reva, V. N. Vasilenko, and O. A. Belous, Mater. Sci. Forum 88–90, 737 (1992).

    Google Scholar 

  17. E. Ma, J. Pagan, G. Cranford, and M. Atzmon, J. Mater. Res. 8, 1836 (1993).

    Google Scholar 

  18. L. Takacs, J. Solid State Chem. 125, 75 (1996).

    Google Scholar 

  19. L. Takacs, Mater. Sci. Forum 269–272, 513 (1998).

    Google Scholar 

  20. A. G. Merzhanov, Intern. J. SHS 4, 323 (1995).

    Google Scholar 

  21. F. Delogu, M. Monagheddu, G. Mulas, L. Schiffini, and G. Cocco, Intern. J. Nonequilibr. Process. 11, 235 (1998).

    Google Scholar 

  22. F. Delogu, L. Schiffini, and G. Cocco, Phil. Mag A, in press.

  23. N. Bertolino, U. Anselmi-Tamburini, F. Maglia, G. Spinolo, and Z. A. Munir, J. Alloys Comp. 288, 238 (1999).

    Google Scholar 

  24. F. Maglia, U. Anselmi-Tamburini, N. Bertolino, C. Milanese, and Z. A. Munir, J. Mater. Res. 15, 1098 (2000).

    Google Scholar 

  25. S. Doppiu, M. Monagheddu, G. Cocco, F. Maglia, N. Bertolino, U. Anselmi-Tamburini, and Z. A. Munir, J. Mater. Res., 16, 1266 (2001).

    Google Scholar 

  26. G. B. Shaffer and P. G. McCormick, Mater. Sci. Forum 88–90, 779 (1992).

    Google Scholar 

  27. F. Maglia, U. Anselmi-Tamburini, G. Cocco, M. Monagheddu, N. Bertolino, and Z. A. Munir, J. Mater. Res., 16, 534 (2001).

    Google Scholar 

  28. B. I. Khaikin and A. G. Merzhanov, Comb. Explosion Shock Waves 2, 22 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselmi-Tamburini, U., Maglia, F., Spinolo, G. et al. Self-Propagating Reactions in the Ti–Si System: A SHS-MASHS Comparative Study. Journal of Materials Synthesis and Processing 8, 377–383 (2000). https://doi.org/10.1023/A:1011315016232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011315016232

Navigation