Skip to main content
Log in

The Contribution of Epigenetic Changes to Abnormal Centrosomes and Genomic Instability in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The centrosome is the major microtubule organizing center of the cell and as such it plays an important role in cytoskeletal organization and in the formation of the bipolar mitotic spindle. Centrosome defects, characterized by abnormal size, number, and microtubule nucleation capacity, are distinguishing features of most high grade breast tumors and have been implicated as a possible cause for the loss of tissue architecture and the origin of mitotic abnormalities seen in solid tumors in general. Centrosome defects arise through uncoupling of centriole duplication and the cell cycle as a result of either genetic alterations or through physical or chemical perturbation of centrosome function. Centrosomes manifest unique epigenetic properties whereby positional or structural information can be propagated through somatic cell lineages by way of nongenetic pathways. Because aberrant centrosome function can result in chromosomal instability, these properties may have important implications for the origin of malignant breast tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Li, A. Sonik, R. Stindl, D. Rasnick, and P. Duesberg (2000). Aneuploidy vs. gene mutation hypothesis of cancer: Recent study claims mutation but is found to support aneuploidy. Proc. Natl. Acad. Sci. U.S.A. 97:3236–3241.

    Google Scholar 

  2. A. M. Martin and B. L. Weber (2000). Genetic and hormonal risk factors in breast cancer. J. Natl. Cancer Inst. 92:1126–1135.

    Google Scholar 

  3. R. Callahan and G. H. Smith (2000). MMTV-inducedmammary tumorigenesis: Gene discovery, progression to malignancy and cellular pathways [see comments]. Oncogene 19:992–1001.

    Google Scholar 

  4. F. P. Perera (2000). Molecular epidemiology: On the path to prevention? J. Natl. Cancer Inst. 92:602–612.

    Google Scholar 

  5. B. Vogelstein and K. W. Kinzler (1993). The multistep nature of cancer. Trends Genet. 9:138–141.

    Google Scholar 

  6. S. B. Baylin and J. G. Herman (2000). DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends Genet. 16:168–174.

    Google Scholar 

  7. B. Lewin (1998). The mystique of epigenetics. Cell. 93:301–303.

    Google Scholar 

  8. D. R. Kellogg (1989). Centrosomes. Organizing cytoplasmic events [news]. Nature 340:99–100.

    Google Scholar 

  9. E. Karsenti and B. Maro (1986). Centrosomes and the spatial distribution of microtubules in animal cells. TIBS. 11:460–463.

    Google Scholar 

  10. D. Mazia, P. Harris, and T. Bibring (1960). The multiplicity of the mitotic centers and time-course of their duplication and separation. J. Biophysic. Biochem. Cytol. 7:1–20.

    Google Scholar 

  11. A. B. Pardee (1989). G1 events and regulation of cell proliferation. Science. 246:603–608.

    Google Scholar 

  12. I. R. Adams and J.V. Kilmartin (2000). Spindle pole body duplication: A model for centrosome duplication? Trends Cell Biol. 10:329–335.

    Google Scholar 

  13. D. Wheatley (1982). The Centriole: A Central Enigma of Cell Biology, Elsevier Biomedical Press, Amsterdam, 232.

    Google Scholar 

  14. P. Chang and T. Stearns (2000). ?-tubulin and ?-tubulin: Two new human centrosomal tubulins reveal new aspects of centrosome structure and function [see comments]. Nat. Cell Biol. 2:30–35.

    Google Scholar 

  15. B. M. Lange and K. Gull (1995). A molecular marker for centriole maturation in the mammalian cell cycle. J. Cell Biol. 130:919–927.

    Google Scholar 

  16. M. M. Mogensen, A. Malik, M. Piel, V. Bouckson-Castaing, and M. Bornens (2000). Microtubule minus-end anchorage at centrosomal and noncentrosomal sites: The role of ninein. J. Cell Sci. 113:3013–3023.

    Google Scholar 

  17. M. Piel, P. Meyer, A. Khodjakov, C. L. Rieder, and M. Bornens (2000). The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149:317–330.

    Google Scholar 

  18. E. B. Wilson (1925). The Cell in Development and Heredity, Third Edition, Macmillan Company New York, p. 1232.

  19. G. Sluder, F. J. Miller, R. Cole, and C. L. Rieder (1990). Protein synthesis and the cell cycle: Centrosome reproduction in sea urchin eggs is not under translational control. J. Cell Biol. 110:2025–2032.

    Google Scholar 

  20. G. Sluder, F. J. Miller, and C. L. Rieder (1986). The reproduction of centrosomes: Nuclear versus cytoplasmic controls. J. Cell Biol. 103:1873–1881.

    Google Scholar 

  21. A. Maniotis and M. Schliwa (1991). Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell 67:495–504.

    Google Scholar 

  22. G. Sluder, F. J. Miller, and C. L. Rieder (1989). Reproductive capacity of sea urchin centrosomes without centrioles. Cell Motil. Cytoskeleton. 13:264–273.

    Google Scholar 

  23. W. F. Marshall and J. L. Rosenbaum (1999). Cell division: The renaissance of the centriole. Curr. Biol. 9:R218–220.

    Google Scholar 

  24. W. F. Marshall and J. L. Rosenbaum (2000). How centrioles work: Lessons from green yeast. Curr. Opin. Cell Biol. 12:119–125.

    Google Scholar 

  25. E. H. Hinchcliffe, C. Li, E. A. Thompson, J. L. Maller, and G. Sluder (1999). Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science. 283:851–854.

    Google Scholar 

  26. E. Karsenti (1999). Centrioles reveal their secrets [news]. Nat. Cell Biol. 1:E62–64.

    Google Scholar 

  27. K. R. Lacey, P. K. Jackson, and T. Stearns (1999). Cyclindependent kinase control of centrosome duplication. Proc. Natl. Acad. Sci. U.S.A. 96:2817–2822.

    Google Scholar 

  28. J.G. Mussman, H. F. Horn, P. E. Carroll, M. Okuda, P. Tarapore, L. A. Donehower, and K. Fukasawa (2000). Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19:1635–1646.

    Google Scholar 

  29. K. Nakayama, H. Nagahama, Y. A. Minamishima, M. Matsumoto, I. Nakamichi, K. Kitagawa, M. Shirane, R. Tsunematsu, T. Tsukiyama, N. Ishida, M. Kitagawa, and S. Hatakeyama (2000). Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J. 19:2069–2081.

    Google Scholar 

  30. M. Winey (1999). Cell cycle: Driving the centrosome cycle. Curr. Biol. 9:R449–452.

    Google Scholar 

  31. E. Stubblefield and B. Brinkley, (1967). Architecture and function of the mammalian centriole. In K. B. Warren, (Ed.), The Origin and Fate of Cell Organelles, Academic Press, New York and London, p. 175–218.

    Google Scholar 

  32. R. S. Kochanski and G. G. Borisy (1990). Mode of centriole duplication and distribution. J. Cell Biol. 110:1599–1605.

    Google Scholar 

  33. E. Bullitt, M. P. Rout, J. V. Kilmartin, and C. W. Akey (1997). The yeast spindle pole body is assembled around a central crystal of Spc42p. Cell 89:1077–1086.

    Google Scholar 

  34. G. Albrecht-Buehler and A. Bushnell (1979). The orientation of centrioles in migrating 3T3 cells. Exp. Cell Res. 120:111–118.

    Google Scholar 

  35. D. Q. Ding, Y. Chikashige, T. Haraguchi, and Y. Hiraoka (1998). Oscillatory nuclear movement in fission yeast meiotic prophase is driven by astral microtubules, as revealed by continuous observation of chromosomes and microtubules in living cells. J. Cell Sci. 111:701–712.

    Google Scholar 

  36. J. Beisson and M. Jerka-Dziadosz (1999). Polarities of the centriolar structure: Morphogenetic consequences. Biol. Cell. 91:367–378.

    Google Scholar 

  37. J. Beisson and T. M. Sonneborn (1965). Cytoplasmic inheritance of the organization of the cell cortex of Paramecium aurelia. Proc. Natl. Acad. Sci. U.S.A. 3:275–282.

    Google Scholar 

  38. J. Frankel (1989). Pattern Formation Cilate Studies and Models, Oxford University Press, New York, p. 314.

    Google Scholar 

  39. T. M. Sonneborn (1975). Positional information and nearest neighbor interactions in relation to spatial patterns in ciliates. Ann. Biol. 14:565–584.

    Google Scholar 

  40. G. Schatten (1994). The centrosome and its mode of inheritance: The reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol. 165:299–335.

    Google Scholar 

  41. B. R. Brinkley and T. M. Goepfert (1998). Supernumerary centrosomes and cancer: Boveri' hypothesis resurrected. Cell Motil. Cytoskeleton. 41:281–288.

    Google Scholar 

  42. P. Duesberg (1999). Are centrosomes or aneuploidy the key to cancer? Science 284:2091–2092.

    Google Scholar 

  43. J. L. Salisbury, C.M. Whitehead, W. L. Lingle, and S. L. Barrett (1999). Centrosomes and cancer. Biol. Cell. 91:451–460.

    Google Scholar 

  44. P. E. Carroll, M. Okuda, H. F. Horn, P. Biddinger, P. J. Stambrook, L. L. Gleich, Y.Q. Li, P. Tarapore, and K. Fukasawa (1999). Centrosome hyperamplification in human cancer: Chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene 18:1935–1944.

    Google Scholar 

  45. W. L. Lingle, W. H. Lutz, J. N. Ingle, N. J. Maihle, and J. L. Salisbury (1998). Centrosome hypertrophy in human breast tumors: Implications for genomic stability and cell polarity. Proc. Natl. Acad. Sci. U.S.A. 95:2950–2955.

    Google Scholar 

  46. G. A. Pihan, A. Purohit, J. Wallace, H. Knecht, B. Woda, P. Quesenberry, and S. J. Doxsey (1998). Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58:3974–3985.

    Google Scholar 

  47. H. Zhou, J. Kuang, L. Zhong, W. L. Kuo, J. W. Gray, A. Sahin, B. R. Brinkley, and S. Sen (1998). Tumor amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 20:189–193.

    Google Scholar 

  48. W. L. Lingle and J. L. Salisbury (1999). Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Amer. J. Pathol. 155:1941–1951.

    Google Scholar 

  49. T. Tanaka, M. Kimura, K. Matsunaga, D. Fukada, H. Mori, and Y. Okano (1999). Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res. 59:2041–2044.

    Google Scholar 

  50. S. Sen (2000). Aneuploidy and cancer. Curr. Opin. Oncol. 12:82–88.

    Google Scholar 

  51. P. Duesberg and D. Rasnick (2000). Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskeleton. 47:81–107.

    Google Scholar 

  52. T. Boveri (1907). Zellenstudien IV: Die entwicklung dispermer Seeigeleier. Ein beitrag zur befruchtungslehre und zur theorie des kernes. Jena. Zeitschr. Naturw. 43:1–292.

    Google Scholar 

  53. T. Boveri (1914). Zur Frage der Entstehung Maligner Tumoren, Baltimore: Jena: Fischer Verlag (1929 English translation by M. Boveri reprinted as “The Origin of Malignant Tumors,” The Williams and Wilkins Co.) p. 119.

    Google Scholar 

  54. S. Chiba, M. Okuda, J. G. Mussman, and K. Fukasawa (2000). Genomic convergence and suppression of centrosome hyperamplification in primary p53-/- cells in prolonged culture. Exp. Cell Res. 258:310–321.

    Google Scholar 

  55. J. M. Hall, M. K. Lee, B. Newman, J. E. Morrow, L.A. Anderson, B. Huey, and M. C. King (1990). Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689.

    Google Scholar 

  56. Y. Miki, J. Swensen, D. Shattuck-Eidens, P. A. Futreal, K. Harshman, S. Tavtigian, Q. Liu, C. Cochran, L. M. Bennett, W. Ding, et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71.

    Google Scholar 

  57. C. X. Deng and S. G. Brodie (2000). Roles of BRCA1 and its interacting proteins [In Process Citation]. Bioessays 22:728–737.

    Google Scholar 

  58. L. C. Hsu and R. L. White (1998). BRCA1 is associated with the centrosome during mitosis. Proc. Natl. Acad. Sci. U.S.A. 95:12983–12988.

    Google Scholar 

  59. T. Ludwig, D. L. Chapman, V. E. Papaioannou, and A. Efstratiadis (1997). Targeted mutations of breast cancer susceptibility gene homologs in mice: Lethal phenotypes of Brca1, Brca2, Brca1/ Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 11:1226–1241.

    Google Scholar 

  60. S. X. Shen, Z. Weaver, X. Xu, C. Li, M. Weinstein, L. Chen, X. Y. Guan, T. Ried, and C. X. Deng (1998). Atargeted disruption of the murine Brca1 gene causes ?-irradiation hypersensitivity and genetic instability. Oncogene 17:3115–3124.

    Google Scholar 

  61. X. Xu, Z. Weaver, S. P. Linke, C. Li, J. Gotay, X.W. Wang, C. C. Harris, T. Ried, and C. X. Deng (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell. 3:389–395.

    Google Scholar 

  62. A. Tutt, A. Gabriel, D. Bertwistle, F. Connor, H. Paterson, J. Peacock, G. Ross, and A. Ashworth (1999). Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr. Biol. 9:1107–1110.

    Google Scholar 

  63. C. R. Brown, S. J. Doxsey, E. White, and W. J. Welch (1994). Both viral (adenovirus E1B) and cellular (hsp 70, p53) components interact with centrosomes. J. Cell Physiol. 160:47–60.

    Google Scholar 

  64. P. Giannakakou, D. L. Sackett, Y. Ward, K. R. Webster, M. V. Blagosklonny, and T. Fojo (2000). p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell Biol. 2:709–717.

    Google Scholar 

  65. K. Fukasawa, T. Choi, R. Kuriyama, S. Rulong, and G. F. Vande Woude (1996). Abnormal centrosome amplification in the absence of p53. Science. 271:1744–1747.

    Google Scholar 

  66. X. J. Wang, D. A. Greenhalgh, A. Jiang, D. He, L. Zhong, D. Medina, B. R. Brinkley, and D. R. Roop (1998). Expression of a p53 mutant in the epidermis of transgenic mice accelerates chemical carcinogenesis. Oncogene 17:35–45.

    Google Scholar 

  67. K. Somasundaram, H. Zhang, Y. X. Zeng, Y. Houvras, Y. Peng, G. S. Wu, J.D. Licht, B. L. Weber, and W. S. El-Deiry (1997). Arrest of the cell cycle by the tumor-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature 389:187–190.

    Google Scholar 

  68. H. Zhang, K. Somasundaram, Y. Peng, H. Tian, D. Bi, B. L. Weber, and W. S. El-Deiry (1998). BRCA1physically associates with p53 and stimulates its transcriptional activity. Oncogene 16:1713–1721.

    Google Scholar 

  69. Y. Matsumoto, K. Hayashi, and E. Nishida (1999). Cyclindependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9:429–432.

    Google Scholar 

  70. C. Mantel, S. E. Braun, S. Reid, O. Henegariu, L. Liu, G. Hangoc, and H. E. Broxmeyer (1999). p21(cip-1/waf-1) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93:1390–1398.

    Google Scholar 

  71. A. McShea, T. Samuel, J. T. Eppel, D. A. Galloway, and J. O. Funk (2000). Identification of CIP-1-associated regulator of cyclin B (CARB), a novel p21-binding protein acting in the G2 phase of the cell cycle. J. Biol. Chem. 275:23181–23186.

    Google Scholar 

  72. P. Bork, K. Hofmann, P. Bucher, A. F. Neuwald, S. F. Altschul, and E. V. Koonin (1997). A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11:68–76.

    Google Scholar 

  73. D. P. Harkin, J. M. Bean, D. Miklos, Y. H. Song, V. B. Truong, C. Englert, F. C. Christians, L.W. Ellisen, S. Maheswaran, J. D. Oliner, and D. A. Haber (1999). Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell. 97:575–586.

    Google Scholar 

  74. S. B. Baylin (1997). Tying it all together: Epigenetics, genetics, cell cycle, and cancer [see comments]. Science 277:1948–1949.

    Google Scholar 

  75. J. Newell-Price, A. J. Clark, and P. King (2000). DNA methylation and silencing of gene expression. Trends Endocrinol. Metab. 11:142–148.

    Google Scholar 

  76. F. Sleutels, D. P. Barlow, and R. Lyle (2000). The uniqueness of the imprinting mechanism. Curr. Opin. Genet. Dev. 10:229–233.

    Google Scholar 

  77. T. H. Bestor (1988). Cloning of a mammalian DNA methyltransferase. Gene. 74:9–12.

    Google Scholar 

  78. L. S. Chuang, H. I. Ian, T. W. Koh, H. H. Ng, G. Xu, and B. F. Li (1997). HumanDNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000.

    Google Scholar 

  79. A. P. Feinberg (2000). DNA methylation, genomic imprinting and cancer. Curr Top. Microbiol. Immunol. 249:87–99.

    Google Scholar 

  80. L. M. Mielnick, H. L. Asch, and B. B. Asch (2001). Genes, chromatin, and breast cancer: An epigenetic tale. J. Mam. Gland Biol. Neoplasia, 6(2):169–182.

    Google Scholar 

  81. H. J. Chial, T. H. Giddings, Jr., E. A. Siewert, M. A. Hoyt, and M. Winey (1999). Altered dosage of the Saccharomyces cerevisiae spindle pole body duplication gene, NDC1, leads to aneuploidy and polyploidy. Proc. Natl. Acad. Sci. U.S.A. 96:10200–10205.

    Google Scholar 

  82. H. J. Chial and M. Winey (1999). Mechanisms of genetic instability revealed by analysis of yeast spindle pole body duplication. Biol. Cell. 91:439–450.

    Google Scholar 

  83. E. Cohen-Jonathan, E. J. Bernhard, and W.G. McKenna (1999). How does radiation kill cells? Curr. Opin. Chem. Biol. 3:77–83.

    Google Scholar 

  84. C. Sato, R. Kuriyama, and K. Nishizawa (1983). Microtubuleorganizing centers abnormal in number, structure, and nucleating activity in X-irradiated mammalian cells. J. Cell Biol. 96:776–782.

    Google Scholar 

  85. N. Sato, K. Mizumoto, M. Nakamura, and M. Tanaka (2000). Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells. Exp. Cell Res. 255:321–326.

    Google Scholar 

  86. F. A. Mettler, A. C. Upton, C. A. Kelsey, R. N. Ashby, R. D. Rosenberg, and M. N. Linver (1996). Benefits versus risks from mammography: A critical reassessment. Cancer 77:903–909.

    Google Scholar 

  87. H. Schatten and A. Chakrabarti (1998). Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs. Eur. J. Cell Biol. 75:9–20.

    Google Scholar 

  88. H. Schatten, C. N. Hueser, and A. Chakrabarti (2000). Centrosomealterations induced by formamide cause abnormal spindle pole formations. Cell Biol. Int. 24:611–620.

    Google Scholar 

  89. D. A. Compton (1999). New tools for the antimitotic toolbox. Science 286:913–914.

    Google Scholar 

  90. T. U. Mayer, T. M. Kapoor, S. J. Haggarty, R. W. King, S. L. Schreiber, and T. J. Mitchison (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974.

    Google Scholar 

  91. T. M. Kapoor, T. U. Mayer, M. L. Coughlin, and T. J. Mitchison (2000). Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150:975–988.

    Google Scholar 

  92. I. Shureiqi and D. E. Brenner (1999). Chemoprevention of epithelial cancers. Curr. Opin. Oncol. 11:408–413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salisbury, J.L. The Contribution of Epigenetic Changes to Abnormal Centrosomes and Genomic Instability in Breast Cancer. J Mammary Gland Biol Neoplasia 6, 203–212 (2001). https://doi.org/10.1023/A:1011312808421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011312808421

Navigation