Skip to main content
Log in

Noncommutative Tomography of an Analytic Signal and Entanglement in the Probability Representation of Quantum Mechanics

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

A review of new results in the quantumlike theory of an analytic signal (used in information processing) on the basis of the recently developed approach of the tomographic description of quantum states in quantum mechanics is presented. The procedure of noncommutative tomography of the analytic signal is used to study the analytic signal depending both on the spatial variable and the time. The entanglement theory of the analytic signal in the noncommutative‐tomography scheme is discussed in connection with information processing, and the possibility to use optical fibers for the simulation of quantum entanglement relevant to quantum computing is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mancini, V. I. Man'ko, and P. Tombesi, Phys. Lett. A, 213, 1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Mancini, V.I. Man'ko, and P. Tombesi, Found. Phys., 27, 801 (1997).

    MathSciNet  Google Scholar 

  3. Olga Man'ko and V.I. Man'ko, J. Russ. Laser Res., 18, 407 (1997).

    Google Scholar 

  4. Olga Man'ko and V.I. Man'ko, J. Russ. Laser Res., 20, 67 (1999).

    Google Scholar 

  5. M. A. Leontovich, Izv. Akad. Nauk SSSR, Ser. Fiz., 8, 16 (1944).

    MATH  Google Scholar 

  6. V. A. Fock and M. A. Leontovich, Zh. ´Eksp. Teor. Fiz., 16, 557 (1946).

    MathSciNet  Google Scholar 

  7. J. A. Arnaud, Beam and Fiber Optics, Academic Press, New York (1976).

    Google Scholar 

  8. J. Sanchez Mondragon and K.-B. Wolf (eds.), Lie Methods in Optics, Lecture Notes in Physics, Springer, Berlin (1986), Vol. 250.

    Google Scholar 

  9. K.-B. Wolf (ed.), Lie Methods in Optics II, Lecture Notes in Physics, Springer, Berlin (1989), Vol. 352.

    Google Scholar 

  10. M. A. Man'ko and G. T. Mikaelyan, Sov. J. Quantum Electron., 16, 895 (1986).

    Google Scholar 

  11. M. A. Man'ko and G. T. Mikaelyan, “Modes and mode conversions in active semiconductor waveguides,” in: Nonlinear Optics of Semiconductor Lasers, Proceedings of the P.N. Lebedev Physical Institute, Nauka (Moscow), Vol. 166, p. 126 [Nova Science, Commack, New York (1987), Vol. 166, p. 170].

    Google Scholar 

  12. M. A. Man'ko, “Some aspects of nonlinear optics of semiconductor lasers,” in: M. Bertolotti (ed.), ECOOSA-90 Quantum Optics, IOP Publishing House, Bristol (1991), p. 247.

    Google Scholar 

  13. L. M. Brekhovskikh, Waves in Slab Media [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  14. R. Fedele, M. A. Man'ko, and V. I. Man'ko, J. Russ. Laser Res., 21, 1 (2000).

    Google Scholar 

  15. R. Fedele, M. A. Man'ko, and V. I. Man'ko, J. Opt. Soc. Am. A, 17, 2506 (2000).

    ADS  Google Scholar 

  16. R. Fedele and P. K. Shukla (eds.), Quantumlike Models and Coherent Effects, World Scientific, Singapore (1995).

    Google Scholar 

  17. S. De Martino, S. De Nicola, S. De Siena, R. Fedele, and G. Miele (eds.), New Perspectives in the Physics of Mesoscopic Systems. Quantumlike Descriptions and Macroscopic Coherent Phenomena, World Scientific, Singapore (1997).

    Google Scholar 

  18. M. A. Man'ko, “Quantum-tomography method in information processing,” Contribution to the Fifth International Conference on Quantum Communication, Measurement, and Computing (Capri, Italy, 3-8 July 2000), in: O. Hirota and P. Tombesi (eds.), The QCM&C Proceedings, Kluwer Academic/Plenum Publishers, New York (2001, in press).

    Google Scholar 

  19. M. A. Man'ko, “Noncommutative tomography of analytic signal and entanglement in the probability representation of quantum mechanics,” Talk at the Second Bielefeld Workshop on Quantum Information and Complexity (Bielefeld, Germany, 12-14 October 2000); Eprint No. 2000/006 of the Workshop “The Sciences of Complexity: From Mathematics to Technology to a Sustainable World” (Center for Interdisciplinary Research, Bielefeld, Germany, 1 October 2000 - 31 August 2001) [http: //www.uni-bielefeld.de/ZIF/complexity/publications.html].

    Google Scholar 

  20. M. A. Man'ko, “Quantumlike models in beam physics and signal analysis,” Talk at the 18th Advanced ICFA Beam Dynamics Workshop om Quantum Aspects of Beam Physics (Capri, Italy, 15-20 October 2000), in: P. Chen (ed.), The QABP2k Proceedings, World Scientific, Singapore (2001, in press); Eprint No. 2000/007 of the Workshop “The Sciences of Complexity: From Mathematics to Technology to a Sustainable World” (Center for Interdisciplinary Research, Bielefeld, Germany, 1 October 2000 - 31 August 2001) [http: //www.uni-bielefeld.de/ZIF/complexity/publications.html].

    Google Scholar 

  21. M. A. Man'ko, J. Russ. Laser Res., 22, 48 (2001).

    Article  Google Scholar 

  22. L. Cohen, J. Math. Phys., 7, 781 (1966).

    Article  Google Scholar 

  23. L. Cohen, Proc. IEEE, 77, 941 (1989).

    Article  ADS  Google Scholar 

  24. L. Cohen, IEEE Trans. Signal Process., 41, 3275 (1993).

    Article  MATH  Google Scholar 

  25. K.-B. Wolf, Integral Transforms in Science and Engineering, Plenum Press, New York (1979).

    Google Scholar 

  26. M. A. Man'ko, V. I. Man'ko, and R. Vilela Mendes, “Tomograms and other transforms: A unified view,” Eprint math-ph/0101025 (2001); J. Phys. A (2001, in press).

  27. M. A. Man'ko, J. Russ. Laser Res., 20, 225 (1999).

    Google Scholar 

  28. M. A. Man'ko, J. Russ. Laser Res., 21, 411 (2000).

    Google Scholar 

  29. V.I. Man'ko and R.V. Mendes, “Noncommutative time-frequency tomography of analytic signal,” SISSA-LANL Eprint Physics/9712022 Data Analysis, Statistics, and Probability.

  30. V. I. Man'ko and R. V. Mendes, Phys. Lett. A, 263, 53 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  31. E. Wigner, Phys. Rev., 40, 749 (1932).

    Article  MATH  ADS  Google Scholar 

  32. J. Ville, Cables et Transmission, 2, 61 (1948).

    Google Scholar 

  33. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 777 (1935).

    Article  ADS  Google Scholar 

  34. M. A. Man'ko, V. I. Man'ko, and R. Vilela Mendes, “Quantum computation by quantumlike systems,” Eprint quant-ph/0104023 (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man'ko, M.A. Noncommutative Tomography of an Analytic Signal and Entanglement in the Probability Representation of Quantum Mechanics. J Russ Laser Res 22, 168–174 (2001). https://doi.org/10.1023/A:1011312122911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011312122911

Keywords

Navigation