Skip to main content
Log in

Diffracted X Rays and Resonance (Coherent) Transition Radiation Generated by High-Energy Charged Particles

  • Published:
Russian Physics Journal Aims and scope

Abstract

The present review is devoted to the current status of research in electromagnetic radiation generated by relativistic charged particles that pass with constant velocities through periodic media. Two particular examples are considered: the first conserves Bragg's scattering of the pseudo-photon field of the charged particle in crystals, and the second concerns the Fresnel scattering of pseudo-photons in a periodic medium. Both effects are very promising for the development of new compact adjustable x-ray sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. L. Ter-Mikaelyan, High-Energy Electromagnetic Processes in Condensed Media, Wiley Interscience, New York (1972).

    Google Scholar 

  2. I. M. Dremin, Mod. Phys. Lett,. A13, 2789 (1998).

    Google Scholar 

  3. Nucl. Instrum. Methods, B145 (1998); E. D. Andersen and L. E. Rehn, eds., Beam Interaction with Materials and Atoms, Elsevier, Amsterdam-Tokyo.

  4. H. Backe, W. Lauth, and T. Walcher, eds., Book of Abstracts. Int. Workshop on Radiation Physics with Relativistic Electrons, Tabarz, Germany (1998).

  5. E. L. Feinberg, Priroda, 1, 30 (1994).

    Google Scholar 

  6. C. A. Vorobyov, B. N. Kalinin, C. D. Pak, and A. P. Potylitsin, JETP Lett., 41, 1 (1985).

    Google Scholar 

  7. Yu. N. Adishchev, V. G. Baryshevskii, C. A. Vorobyov, et al., Ibid., 41, 361; Yu. N. Adishchev, C. A. Vorobiev, B. N. Kalinin, et al., Sov. Phys. JETP, 90, 829 (1986).

    Google Scholar 

  8. R. O. Avakyan, A. E. Avetisyan, Yu. N. Adishchev, et al., JETP Lett., 45, 313 (1987).

    Google Scholar 

  9. A. V. Shchagin, V. I. Pristupa, and N. A. Khizhnyak, Phys. Lett., A148, 485 (1990); Nucl. Instrum. Methods, B99, 277 (1995).

    Google Scholar 

  10. V. Afanasenko, V. G. Baryshevski, et al., Phys. Lett., A170, 315 (1992).

    Google Scholar 

  11. S. Asano, I. Endo, M. Harada, et al., Phys. Rev. Lett., 70, 3247 (1993).

    Google Scholar 

  12. R. B. Fiorito, D. W. Rule, et al., Ibid., 71, 704 (1993).

    Google Scholar 

  13. A. V. Shchagin, V. I. Pristupa, and N. A. Khizhnyak, in: Proc. RREPS, Tomsk (1993), p. 62-75; Nucl. Instrum. Methods, B99, 277 (1993); Nucl. Instrum. Methods, B119, 115 (1996).

  14. H. Nitta, Phys. Rev., B45, 7645 (1992); Phys. Lett., A270, 1158 (1990); Nucl. Instrum. Methods, B115, 401 (1996).

    Google Scholar 

  15. V. G. Baryshevski, High-Energy Channeling, Radiation, and Reaction in Crystals [in Russian], Minsk University, Minsk (1982).

    Google Scholar 

  16. G. M. Garibian and C. Yang, Transition X Radiation [in Russian], Akad. Nauk Arm.SSR, Yerevan (1983).

    Google Scholar 

  17. J. Freudenberger, M. Galemann, H. Genz, et al., Nucl. Instrum. Methods, B115, 408 (1996).

    Google Scholar 

  18. J. Freudenberger, H. Genz, and V. V. Morokhovski, Appl. Phys. Lett., 70, 2 (1997).

    Google Scholar 

  19. K. H. Brenzinger, B. Limburg, H. Backe, et al., Phys. Rev. Lett., 79, 2462 (1997); Z. Phys., A358, 107 (1997).

    Google Scholar 

  20. Th. Doerk, H. Backe, N. Clawiter, et al., in: Abstracts of Reports at the Intern. Workshop, Tabarz (1998).

  21. V. V. Morokhovski, K. N. Schmidt, G. Buschhorn, et al., Phys. Rev. Lett., 79 4389 (1997); V. V. Morokhovski, Dissert. D17, Technische Universitaet, Darmstadt (1998).

    Google Scholar 

  22. K. H. Schmidt, G. Buschhorn, R. Kottaus, et al., Nucl. Instrum. Methods, B145, 8 (1998); V. V. Morokhovskii, J. Freudenberger, H. Genz, et al., Ibid., 14.

    Google Scholar 

  23. R. Kottaus, G. Buschhorn, M. Rzepka, et al., SPIE Proc., 3443, 105 (1998).

    Google Scholar 

  24. A. V. Shchagin, Phys. Lett., A247, 27 (1998).

    Google Scholar 

  25. M. L. Ter-Mikaelyan, Dokl. Akad. Nauk SSSR, 94, 1033 (1954).

    Google Scholar 

  26. Yu. N. Adishchev, V. A. Verzilov, S. A. Vorobyev, et al., JETP Lett., 48, 311 (1988); Nucl. Instrum. Methods, B44, 130 (1989).

    Google Scholar 

  27. I. Endo, M. Harada, T. Kabayashi, et al., Phys. Rev., E51, 6305 (1995).

    Google Scholar 

  28. R. B. Fiorito, D. W. Rule, M. A. Piestrup, et al., Ibid., 2759.

  29. J. Freudenberger, Phys. Rev. Lett., 74, 2487 (1995).

    Google Scholar 

  30. I. D. Feranchuk and A. V. Ivashin, J. Phys. (Paris), 46, 1981 (1985).

    Google Scholar 

  31. K. Yu. Amosov, B. N. Kalinin, A. P. Potylitsin, et al., Phys. Rev., E47, 2207 (1993).

    Google Scholar 

  32. R. O. Avakian, A. E. Avetissian, H. S. Kizoghian, et al., Rad. Eff. Def. Sol. 117, 17 (1991); H. A. Aslanyan and H. A. Mkrtchyan, in: Abstracts of Reports at Int. Workshop, Tabarz (1998); Phys. Lett., A152, 297 (1991).

    Google Scholar 

  33. R. B. Fiorito, D. W. Rule, et al., Nucl. Instrum. Methods, B79, 758 (1993).

    Google Scholar 

  34. G. M. Garibian, Sov. Phys. JETP, 37 527 (1959).

    Google Scholar 

  35. K. A. Barsukov, Ibid., 1106.

  36. M. L. Ter-Mikaelyan, Sov. Phys. JETP, 25 289 (1953); Ibid., 296.

    Google Scholar 

  37. I. M. Franck, Usp. Fiz. Nauk, 175, 231 (1960).

    Google Scholar 

  38. M. L. Ter-Mikaelyan, Dokl. Akad. Nauk SSSR, 134, 318 (1960).

    Google Scholar 

  39. M. L. Ter-Mikaelyan, Nucl. Phys., 24, 43 (1961); JETP Lett., 8, 100 (1968).

    Google Scholar 

  40. F. R. Arutyunyan and K. A. Ispiryan, Yad. Fiz., No. 1, 842 (1964).

  41. F. R. Arutyunyan and M. L. Ter-Mikaelyan, Usp. Fiz. Nauk, 107, 325 (1972).

    Google Scholar 

  42. V. L. Ginzburg, Priroda, 8, 56 (1975); V. L. Ginzburg and V. N. Tsytovich, Phys. Rep., 49, 1 (1979).

    Google Scholar 

  43. M. L. Cherry and G. Hartmann, Phys. Rev., D10, 3594 (1974).

    Google Scholar 

  44. X. Artru, G. Yodh, and G. Mennessier, Phys. Rev., D12, 1228 (1975).

    Google Scholar 

  45. M. Deutschmann, W. Struczinski, C. W. Fabjan, et al., Nucl. Instrum. Methods, 180, 409 (1981).

    Google Scholar 

  46. B. Dolgoshein, Nucl. Instrum. Methods, A326, 434 (1993).

    Google Scholar 

  47. P. J. Ebert, M. J. Moran, D. A. Dahling, et al., Phys. Rev. Lett., 54, 893 (1985).

    Google Scholar 

  48. M. A. Piestrup, J. O. Kephart, P. K. Park, et al., Phys. Rev., A32, 917 (1985).

    Google Scholar 

  49. M. A. Piestrup, D. G. Boyers, C. I. Pinkus, et al., Appl. Phys. Lett., 58,No. 23, 2692 (1991); 59, No. 2, 189 (1992).

    Google Scholar 

  50. M. L. Moran, B. A. Dahling, P. J. Ebert, et al., Phys. Rev. Lett., 57, 1223 (1986).

    Google Scholar 

  51. P. Goedtkindt, S. M. Salome, X. Artru, et al., Nucl. Instrum. Methods, B56-57, 1060 (1991).

    Google Scholar 

  52. P. Goedtkindt, S. M. Salome, X. Artru, et al., Microelectron. Eng. 13, 327 (1991).

    Google Scholar 

  53. M. A. Piestrup, D. G. Boyers, C. A. Pincus, et al., Phys. Rev., A45, 1183 (1992).

    Google Scholar 

  54. T. Tanaka, T. Awata, A. Itoh, et al., Nucl. Instrum. Methods, B93, 21 (1994).

    Google Scholar 

  55. T. Awata, K. Yajima, T. Tanaka, et al., Radiat. Phys. Chem., 50,No. 3, 207 (1997).

    Google Scholar 

  56. T. Awata, K. Yajima, T. Tanaka, et al., Application of Accelerators in Research and Industry, AIP, New York (1997).

    Google Scholar 

  57. T. Awata, K. Yajima, Y. Koizumi, et al., Beam Sci. Tech., 3, 10 (1998).

    Google Scholar 

  58. S. Asano, I. Endo, M. Harada, et al., Phys. Rev. Lett., 70, 3247 (1993).

    Google Scholar 

  59. A. P. Potylitsyn and V. A. Verzilov, Phys. Lett., A209, 380 (1995).

    Google Scholar 

  60. M. Yu. Andreyashkin, V. V. Kaplin, A. P. Potylitsin, et al., Nucl. Instrum. Methods, B119, 108 (1996); M. Yu. Andreyashkin, V. N. Zabaev, V. V. Kaplin, et al., Pis'ma Zh. Eksp. Teor. Fiz., 65, No. 8, 594 (1997).

    Google Scholar 

  61. Y. Takashima, K. Aramitsu, and I. Endo, Nucl. Instrum. Methods, B145, 25 (1998).

    Google Scholar 

  62. A. P. Potylitsyn, Phys. Lett., A238, 112 (1998).

    Google Scholar 

  63. A. P. Potylitsyn, Nucl. Instrum. Methods, B145, 60 (1998).

    Google Scholar 

  64. V. V. Kaplin, S. R. Uglov, V. N. Zabaev, et al., Nucl. Instrum. Methods, A448, 66 (2000).

    Google Scholar 

  65. V. G. Baryshevsky, Nucl. Instrum. Methods, A122, 13 (1997).

    Google Scholar 

  66. X. Artru and P. Rullhusen, Nucl. Instrum. Methods, B145, 1 (1998).

    Google Scholar 

  67. N. Nasonov, Phys. Lett., A246, 148 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ter-Mikaelyan, M.L. Diffracted X Rays and Resonance (Coherent) Transition Radiation Generated by High-Energy Charged Particles. Russian Physics Journal 44, 321–329 (2001). https://doi.org/10.1023/A:1011308406618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011308406618

Keywords

Navigation